Advertisement

Analytical and Bioanalytical Chemistry

, Volume 410, Issue 9, pp 2395–2402 | Cite as

Characterization of a novel miniaturized burst-mode infrared laser system for IR-MALDESI mass spectrometry imaging

  • Måns Ekelöf
  • Jeffrey ManniSr
  • Milad Nazari
  • Mark Bokhart
  • David C. Muddiman
Research Paper

Abstract

Laser systems are widely used in mass spectrometry as sample probes and ionization sources. Mid-infrared lasers are particularly suitable for analysis of high water content samples such as animal and plant tissues, using water as a resonantly excited sacrificial matrix. Commercially available mid-IR lasers have historically been bulky and expensive due to cooling requirements. This work presents a novel air-cooled miniature mid-IR laser with adjustable burst-mode output and details an evaluation of its performance for mass spectrometry imaging. The miniature laser was found capable of generating sufficient energy for complete ablation of animal tissue in the context of an IR-MALDESI experiment with exogenously added ice matrix, yielding several hundred confident metabolite identifications.

Graphical abstract

The use of a novel miniature 2.94 μm burst-mode laser in IR-MALDESI allows for rapid and sensitive mass spectrometry imaging of a whole mouse.

Keywords

Mass spectrometry imaging Infrared laser IR-MALDESI HRAM mass spectrometry 

Notes

Acknowledgements

The authors thank Prof. Troy Ghashghaei (NCSU Department of Molecular Biomedical Sciences) for providing the animal tissues used in imaging experiments.

Funding information

Financial support for this work was received from the National Institutes of Health (R01GM087964). All of the mass spectrometry measurements were carried out in the Molecular Education, Technology, and Research Innovation Center (METRIC) at NC State University.

Compliance with ethical standards

Conflicts of interest

J. Manni is president and owner of JGM Associates Inc. (JGMA) which makes the 2950-nm OPO laser used in these experiments. Certain aspects of the laser design are JGMA patent pending. None of the remaining authors have any conflicts of interest.

Use of research animals

This study utilized tissues sourced from animals managed in accordance with the Institute for Laboratory Animal Research Guide. All husbandry practices were approved by North Carolina State University Institutional Animal Care and Use Committee (IACUC).

References

  1. 1.
    Honig RE, Woolston JR. Laser-induced emission of electrons, ions, and neutral atoms from solid surfaces. Appl Phys Lett. 1963;2(7):138–9.CrossRefGoogle Scholar
  2. 2.
    Posthumus MA, Kistemaker PG, Meuzelaar HLC, Tennoeverdebrauw MC. Laser desorption-mass spectrometry of polar non-volatile bio-organic molecules. Anal Chem. 1978;50(7):985–91.CrossRefGoogle Scholar
  3. 3.
    Karas M, Bachmann D, Hillenkamp F. Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Anal Chem. 1985;57(14):2935–9.CrossRefGoogle Scholar
  4. 4.
    Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T, et al. Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Sp. 1988;2(8):151–3.CrossRefGoogle Scholar
  5. 5.
    Dreisewerd K. The desorption process in MALDI. Chem Rev. 2003;103(2):395–425.CrossRefGoogle Scholar
  6. 6.
    Beekman DW, Callcott TA, Kramer SD, Arakawa ET, Hurst GS, Nussbaum E. Resonance ionization source for mass-spectroscopy. Int J Mass Spectrom Ion Process. 1980;34(1–2):89–97.CrossRefGoogle Scholar
  7. 7.
    Grotemeyer J, Boesl U, Walter K, Schlag EW. Biomolecules in the gas-phase. 2. Multiphoton ionization mass-spectrometry of angiotensin-I. Org Mass Spectrom. 1986;21(9):595–7.CrossRefGoogle Scholar
  8. 8.
    Spengler B, Bahr U, Karas M, Hillenkamp F. Postionization of laser-desorbed organic and inorganic-compounds in a time of flight mass-spectrometer. Anal Instrum. 1988;17(1–2):173–93.CrossRefGoogle Scholar
  9. 9.
    Shiea J, Huang MZ, HSu HJ, Lee CY, Yuan CH, Beech I, et al. Electrospray-assisted laser desorption/ionization mass spectrometry for direct ambient analysis of solids. Rapid Commun Mass Sp. 2005;19(24):3701–4.CrossRefGoogle Scholar
  10. 10.
    Sampson JS, Hawkridge AM, Muddiman DC. Generation and detection of multiply-charged peptides and proteins by matrix-assisted laser desorption electrospray ionization (MALDESI) Fourier transform ion cyclotron resonance mass spectrometry. J Am Soc Mass Spectr. 2006;17(12):1712–6.CrossRefGoogle Scholar
  11. 11.
    Dixon RB, Muddiman DC. Study of the ionization mechanism in hybrid laser based desorption techniques. Analyst. 2010;135(5):880–2.CrossRefGoogle Scholar
  12. 12.
    Sampson JS, Muddiman DC. Atmospheric pressure infrared (10.6 mu m) laser desorption electrospray ionization (IR-LDESI) coupled to a LTQ Fourier transform ion cyclotron resonance mass spectrometer. Rapid Commun Mass Sp. 2009;23(13):1989–92.CrossRefGoogle Scholar
  13. 13.
    Robichaud G, Barry JA, Muddiman DC. IR-MALDESI mass spectrometry imaging of biological tissue sections using ice as a matrix. J Am Soc Mass Spectr. 2014;25(3):319–28.CrossRefGoogle Scholar
  14. 14.
    Nemes P, Vertes A. Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry. Anal Chem. 2007;79(21):8098–106.CrossRefGoogle Scholar
  15. 15.
    Wu CP, Dill AL, Eberlin LS, Cooks RG, Ifa DR. Mass spectrometry imaging under ambient conditions. Mass Spectrom Rev. 2013;32(3):218–43.CrossRefGoogle Scholar
  16. 16.
    Walsh JT Jr, Flotte TJ, Deutsch TF. Er:YAG laser ablation of tissue: effect of pulse duration and tissue type on thermal damage. Lasers Surg Med. 1989;9(4):314–26.CrossRefGoogle Scholar
  17. 17.
    Nazari M, Muddiman DC. Polarity switching mass spectrometry imaging of healthy and cancerous hen ovarian tissue sections by infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI). Analyst. 2016;141(2):595–605.CrossRefGoogle Scholar
  18. 18.
    Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S, et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol. 2012;30(10):918–20.CrossRefGoogle Scholar
  19. 19.
    Schramm T, Hester A, Klinkert I, Both JP, Heeren RMA, Brunelle A, et al. imzML—a common data format for the flexible exchange and processing of mass spectrometry imaging data. J Proteome. 2012;75(16):5106–10.CrossRefGoogle Scholar
  20. 20.
    Race AM, Styles IB, Bunch J. Inclusive sharing of mass spectrometry imaging data requires a converter for all. J Proteome. 2012;75(16):5111–2.CrossRefGoogle Scholar
  21. 21.
    Bokhart MT, Nazari M, Garrard KP, Muddiman DC. MSiReader v1.0: evolving open-source mass spectrometry imaging software for targeted and untargeted analyses. J Am Soc Mass Spectrom. 2017;Google Scholar
  22. 22.
    Robichaud G, Garrard KP, Barry JA, Muddiman DC. MSiReader: an open-source interface to view and analyze high resolving power MS imaging files on matlab platform. J Am Soc Mass Spectr. 2013;24(5):718–21.CrossRefGoogle Scholar
  23. 23.
    Palmer A, Phapale P, Chernyavsky I, Lavigne R, Fay D, Tarasov A, et al. FDR-controlled metabolite annotation for high-resolution imaging mass spectrometry. Nat Methods. 2017;14(1):57–60.CrossRefGoogle Scholar
  24. 24.
    Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu YF, et al. HMDB 3.0-the human metabolome database in 2013. Nucleic Acids Res. 2013;41(D1):D801–D7.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Måns Ekelöf
    • 1
  • Jeffrey ManniSr
    • 2
  • Milad Nazari
    • 1
  • Mark Bokhart
    • 1
  • David C. Muddiman
    • 1
    • 3
  1. 1.FTMS Laboratory for Human Health Research, Department of ChemistryNorth Carolina State UniversityRaleighUSA
  2. 2.JGM Associates, Inc.BurlingtonUSA
  3. 3.Molecular Education, Technology and Research Innovation CenterNorth Carolina State UniversityRaleighUSA

Personalised recommendations