Advertisement

Analytical and Bioanalytical Chemistry

, Volume 410, Issue 5, pp 1453–1462 | Cite as

An aptamer-based biosensor for detection of doxorubicin by electrochemical impedance spectroscopy

  • Nicole Bahner
  • Peggy Reich
  • Dieter Frense
  • Marcus Menger
  • Katharina Schieke
  • Dieter Beckmann
Research Paper

Abstract

An aptamer-based biosensor was developed for the detection of doxorubicin using electrochemical impedance spectroscopy. Doxorubicin and its 14-dehydroxylated version daunorubicin are anthracyclines often used in cancer treatment. Due to their mutagenic and cardiotoxic effects, detection in groundwater is desirable. We developed a biosensor using the daunorubicin-binding aptamer as biological recognition element. The aptamer was successfully co-immobilized with mercaptohexanol on gold and a density of 1.3*1013 ± 2.4*1012 aptamer molecules per cm2 was achieved. The binding of doxorubicin to the immobilized aptamer was detected by electrochemical impedance spectroscopy. The principle is based on the inhibition of electron transfer between electrode and ferro-/ferricyanide in solution caused by the binding of doxorubicin to the immobilized aptamer. A linear relationship between the charge transfer resistance (R ct ) and the doxorubicin concentration was obtained over the range of 31 nM to 125 nM doxorubicin, with an apparent binding constant of 64 nM and a detection limit of 28 nM. With the advantages of high sensitivity, selectivity, and simple sensor construction, this method shows a high potential of impedimetric aptasensors in environmental monitoring.

Graphical abstract

Measurement chamber and immobilization principle for the detection of doxorubicin by electrochemical impedance spectroscopy.

Keywords

Aptasensor Faradaic EIS Electroanalytical methods Water pollution Self-assembly 

Notes

Acknowledgements

The authors gratefully acknowledge the Federal Ministry of Economic Affairs and Energy within the framework of the AiF-ZIM-program for supporting this project under grant nos. ZF4019603MD6 and ZF4086507MD6.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Rahman A, Goodman A, Foo W, Harvey J, Smith FP, Schein PS. Clinical pharmacology of daunorubicin in Phase I patients with solid tumors: development of an analytical methodology for daunorubicin and its metabolites. Semin Oncol. 1984;11(4):36–44.Google Scholar
  2. 2.
    de los Santos-Alvarez N, Lobo-Castanon MJ, Miranda-Ordieres AJ, Tunon-Blanco P (2008) Aptamers as recognition elements for label-free analytical devices. TrAC Trends Anal Chem 27(5):437-446Google Scholar
  3. 3.
    Hanna AD, Lam A, Tham S, Dulhunty AF, Beard NA. Adverse effects of doxorubicin and its metabolic product on cardiac RyR2 and SERCA2A. Mol Pharmacol. 2014;86(4):438–49.CrossRefGoogle Scholar
  4. 4.
    Mahnik SN, Lenz K, Weissenbacher N, Mader RM, Fuerhacker M. Fate of 5-fluorouracil, doxorubicin, epirubicin, and daunorubicin in hospital wastewater and their elimination by activated sludge and treatment in a membrane-bio-reactor system. Chemosphere. 2007;66, 30(1):–37.Google Scholar
  5. 5.
    Chisvert A, Sisternes J, Balaguer Á, Salvador A. A gas chromatography–mass spectrometric method to determine skin-whitening agents in cosmetic products. Talanta. 2010;81(1):530–6.CrossRefGoogle Scholar
  6. 6.
    Diallo S, Lecanu L, Greeson J, Papadopoulos V. A capillary gas chromatography/mass spectrometric method for the quantification of hydroxysteroids in human plasma. Analytical Biochemistry. 2004;324(1):123–30.CrossRefGoogle Scholar
  7. 7.
    Kaushik D, Bansal G. Characterization of degradation products of idarubicin through LC-UV, MSn, and LC-MS-TOF studies. J Pharmaceut Biomedi Anal. 2013;85:123–31.CrossRefGoogle Scholar
  8. 8.
    Fogli S, Danesi R, Innocenti F, Di Paolo A, Bocci G, Barbara C, Del Tacca M. An improved HPLC method for therapeutic drug monitoring of daunorubicin, idarubicin, doxorubicin, epirubicin, and their 13-dihydro metabolites in human plasma. Ther Drug Monit. 1999;21(3):367–75.Google Scholar
  9. 9.
    Chin DL, Lum BL, Sikic BI. Rapid determination of PEGylated liposomal doxorubicin and its major metabolite in human plasma by ultraviolet-visible high-performance liquid chromatography. J Chromatogr B Anal Technol Biomedi Life Sci. 2002;779(2):259–69.CrossRefGoogle Scholar
  10. 10.
    Hassan HNA, Barsoum BN, Habib IHI. Simultaneous spectrophotometric determination of rutin, quercetin, and ascorbic acid in drugs using a Kalman filter approach. J Pharmaceut Biomed Anal. 1999;20(1):315–20.CrossRefGoogle Scholar
  11. 11.
    Zhang F, Du Y, Ye B, Li P. Study on the interaction between the chiral drug of propranolol and α1-acid glycoprotein by fluorescence spectrophotometry. J Photochem Photobiol B Biology. 2007;86(3):246–51.CrossRefGoogle Scholar
  12. 12.
    Sun S, Huang X, Ma M, Qiu N, Cai Z, Luo Z, Alies NP. Systematic evaluation of avidin–biotin interaction by fluorescence spectrophotometry. Spectrochim Acta Part A Mol Biomol Spectrosc. 2012;89:99–104.Google Scholar
  13. 13.
    Yang X, Gao H, Qian F, Zhao C, Liao X. Internal standard method for the measurement of doxorubicin and daunorubicin by capillary electrophoresis with in-column double optical-fiber LED-induced fluorescence detection. J Parmaceut Biomed Anal. 2016;117:118–24.CrossRefGoogle Scholar
  14. 14.
    Simeon N, Chatelut E, Canal P, Nertz M, Couderc F. Anthracycline analysis by capillary electrophoresis. Application to the analysis of daunorubicine in Kaposi sarcoma tumor. J Chromatogr A. 1999;853(1/2):449–54.CrossRefGoogle Scholar
  15. 15.
    Erdem A, Karadeniz H, Caliskan A. Dendrimer modified graphite sensors for detection of anticancer drug daunorubicin by voltammetry and electrochemical impedance spectroscopy. Analyst. 2011;136(5):1041–5.CrossRefGoogle Scholar
  16. 16.
    Strehlitz B, Reinemann C, Linkorn S, Stoltenburg R. Aptamers for pharmaceuticals and their application in environmental analytics. Bioanal Rev. 2012;4(1):1–30.CrossRefGoogle Scholar
  17. 17.
    Velasco-Garcia MN, Missailidis S. New trends in aptamer-based electrochemical biosensors. Gene Ther Mol Biol. 2009;13(A):1–9.Google Scholar
  18. 18.
    Mann D, Reinemann C, Stoltenburg R, Strehlitz B. In vitro selection of DNA aptamers binding ethanolamine. Biochem Biophys Res Commun. 2005;338(4):1928–34.CrossRefGoogle Scholar
  19. 19.
    Liang G, Man Y, Jin X, Pan L, Liu X. Aptamer-based biosensor for label-free detection of ethanolamine by electrochemical impedance spectroscopy. Anal Chim Acta. 2016;36:222–8.CrossRefGoogle Scholar
  20. 20.
    Baker BR, Lai RY, Wood MS, Doctor EH, Heeger AJ, Plaxco KW. An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. J Am Chem Soc. 2006;128(10):3138–9.CrossRefGoogle Scholar
  21. 21.
    Schoukroun-Barnes LR, Wagan S, White RJ. Enhancing the analytical performance of electrochemical RNA aptamer-based sensors for sensitive detection of aminoglycoside antibiotics. Anal Chem. 2014;86(2):1131–7.CrossRefGoogle Scholar
  22. 22.
    White RJ, Rowe AA, Plaxco KW. Re-engineering aptamers to support reagentless, self-reporting electrochemical sensors. Analyst. 2010;135(3):589–94.CrossRefGoogle Scholar
  23. 23.
    Stojanovic MN, de Prada P, Landry DW. Aptamer-based folding fluorescent sensor for cocaine. J Am Chem Soc. 2001;123(21):4928–31.CrossRefGoogle Scholar
  24. 24.
    Kim YS, Jung HS, Matsuura T, Lee HY, Kawai T, Gu MB. Electrochemical detection of 17β-estradiol using DNA aptamer immobilized gold electrode chip. Biosens Bioelectron. 2007;22(11):2525–31.CrossRefGoogle Scholar
  25. 25.
    Wochner A, Menger M, Orgel D, Cech B, Rimmele M, Erdmann VA, Glökler J. A DNA aptamer with high affinity and specificity for therapeutic anthracyclines. Anal Biochem. 2008;373(1):34–42.Google Scholar
  26. 26.
    Sauerbrey G. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Zeitschrift Physik. 1959;155(2):206–22.CrossRefGoogle Scholar
  27. 27.
    Oesch U, Janata J. Electrochemical study of gold electrodes with anodic oxide films, I. Formation and reduction behaviour of anodic oxides on gold. Electrochim Acta. 1983;28(9):1237–46.CrossRefGoogle Scholar
  28. 28.
    Keighley SD, Li P, Estrela P, Migliorato P. Optimization of DNA immobilization on gold electrodes for label-free detection by electrochemical impedance spectroscopy. Biosens Bioelectron. 2008;23(8):1291–7.CrossRefGoogle Scholar
  29. 29.
    Hirschorn B, Orazem ME, Tribollet B, Vivier V, Frateur I, Musiani M. Determination of effective capacitance and film thickness from constant-phase-element parameters. Electrochim Acta. 2010;55(21):6218–27.CrossRefGoogle Scholar
  30. 30.
    Ilgu M, Nilsen-Hamilton M. Aptamers in analytics. Analyst. 2016;141(5):1551–68.  https://doi.org/10.1039/c5an01824b .CrossRefGoogle Scholar
  31. 31.
    Frense D, Kang S, Schieke K, Reich P, Barthel A, Pliquett U, Nacke T, Brian C, Beckmann D. Label-free impedimetric biosensor for thrombin using the thrombin-binding aptamer as receptor. J Phys: Conference Series. 2013;434:012091.Google Scholar
  32. 32.
    Li X, Shen L, Zhang D, Qi H, Gao Q, Ma F, Zhang C. Electrochemical impedance spectroscopy for study of aptamer–thrombin interfacial interactions. Biosens Bioelectron. 2008;23(11):1624–30.Google Scholar
  33. 33.
    Yang H, Ji J, Liu Y, Kong JL, Liu BH. An aptamer-based biosensor for sensitive thrombin detection. Electrochem Commun. 2009;11(1):38–40.CrossRefGoogle Scholar
  34. 34.
    Yao CY, Qi YZ, Zhao YH, Xiang Y, Chen QH, Fu WL. Aptamer-based piezoelectric quartz crystal microbalance biosensor array for the quantification of IgE. Biosens Bioelectron. 2009;24(8):2499–503.CrossRefGoogle Scholar
  35. 35.
    Papamichael KI, Kreuzer MP, Guilbault GG. Viability of allergy (IgE) detection using an alternative aptamer receptor and electrochemical means. Sensors Actuators B Chemical. 2007;121(1):178–86.CrossRefGoogle Scholar
  36. 36.
    Ohuchi S, Mori Y, Nakamura Y. Evolution of an inhibitory RNA aptamer against T7 RNA polymerase. FEBS Open Bio. 2012;2:203–7.CrossRefGoogle Scholar
  37. 37.
    Hynek D, Krejcova L, Zitka O, Adam V, Trnkova L, Sochor J. Electrochemical study of doxorubicin interaction with different sequences of single stranded oligonucleotides. Part I. Int J Electrochem Sc. 2012;7(1):13–33.Google Scholar
  38. 38.
    Gui-Fang C, Jie Z, Yong-Hua T, Pin-Gang H, Yu-Zhi F, Stiborová M, Eckschlager T, Hubálek J, Kizek R. Study on the interaction between antitumor drug daunomycin and DNA. Chin J Chem. 2005;23(5):576–80.Google Scholar
  39. 39.
    Cattoni DI, Chara O, Kaufman SB, González Flecha FL. Cooperativity in binding processes: new insights from phenomenological modeling. PLOS ONE. 2016;10(12):e0146043.CrossRefGoogle Scholar
  40. 40.
    Swain MD, Octain J, Benson DE. Unimolecular, soluble semiconductor nanoparticle-based biosensors for thrombin using charge/electron transfer. Bioconj Chem. 2008;19(12):2520–6.CrossRefGoogle Scholar
  41. 41.
    Urmann K, Reich P, Walter JG, Beckmann D, Segal E, Scheper T. Rapid and label-free detection of protein a by aptamer-tethered porous silicon nanostructures. J Biotechnol. 2017;257:171–7.CrossRefGoogle Scholar
  42. 42.
    Blouin S, Lafontaine DA. A loop–loop interaction and a K-turn motif located in the lysine aptamer domain are important for the riboswitch gene regulation control. RNA. 2007;13(8):1256–67.CrossRefGoogle Scholar
  43. 43.
    Shi P, Zhang Y, Yu Z, Zhang S. Label-free electrochemical detection of ATP based on amino-functionalized metal-organic framework. Sci Rep. 2017;7(1):–6500.Google Scholar
  44. 44.
    Liang G, Man Y, Jin X, Pan L, Liu X, Glökler J. Aptamer-based biosensor for label-free detection of ethanolamine by electrochemical impedance spectroscopy. Anal Chim Acta. 2016;936:222–8.Google Scholar
  45. 45.
    Istamboulié G, Paniel N, Zara L, Reguillo Granados L, Barthelmebs L, Noguer T. Development of an impedimetric aptasensor for the determination of aflatoxin M1 in milk. Talanta. 2016;146:464–9.CrossRefGoogle Scholar
  46. 46.
    Lao Y-H, Peck K, Chen L-C. Enhancement of aptamer microarray sensitivity through spacer optimization and avidity effect. Anal Chem. 2009;81:1747–54.CrossRefGoogle Scholar
  47. 47.
    Wochner A.. Selektion von Aptameren gegen Antibiotika und deren Einsatz in empfindlichen Assayformaten. Freie Universität Berlin. (2007).Google Scholar
  48. 48.
    Davis JT. 40 Jahre G-Quartetts: von 5′-GMP zur Molekularbiologie und Supramolekularen Chemie. Angew Chem. 2004;116(6):684–716.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Nicole Bahner
    • 1
  • Peggy Reich
    • 1
  • Dieter Frense
    • 1
  • Marcus Menger
    • 2
  • Katharina Schieke
    • 1
  • Dieter Beckmann
    • 1
  1. 1.Institute for Bioprocess and Analytical Measurement Technology e.V. RosenhofHeilbad HeiligenstadtGermany
  2. 2.Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB)PotsdamGermany

Personalised recommendations