Advertisement

Analytical and Bioanalytical Chemistry

, Volume 410, Issue 15, pp 3473–3482 | Cite as

Novel comprehensive multidimensional liquid chromatography approach for elucidation of the microbosphere of shikimate-producing Escherichia coli SP1.1/pKD15.071 strain

  • Francesco Cacciola
  • Domenica Mangraviti
  • Francesca Rigano
  • Paola Donato
  • Paola Dugo
  • Luigi MondelloEmail author
  • Hernan J. Cortes
Research Paper
Part of the following topical collections:
  1. Discovery of Bioactive Compounds

Abstract

Shikimic acid is a intermediate of aromatic amino acid biosynthesis and the preferred starting material for production of the most commonly prescribed anti-influenza drug, Tamiflu. Its six-membered carbocyclic ring is adorned with several chiral centers and various functionalities, making shikimic acid a valuable chiral synthon. When microbially-produced, in addition to shikimic acid, numerous other metabolites are exported out of the cytoplasm and accumulate in the culture medium. This extracellular matrix of metabolites is referred to as the microbosphere. Due to the high sample complexity, in this study, the microbosphere of shikimate-producing Escherichia coli SP1.1/pKD15.071 was analyzed by liquid chromatography and comprehensive two-dimensional liquid chromatography coupled to photodiode array and mass spectrometry detection. GC analysis of the trimethylsilyl derivatives was also carried out in order to support the elucidation of the selected metabolites in the microbosphere. The elucidation of the metabolic fraction of this bacterial strain might be of valid aid for improving, through genetic changes, the concentration and yield of shikimic acid synthesized from glucose.

Graphical abstract

Keywords

Shikimic acid Metabolites Comprehensive two-dimensional liquid chromatography Microbosphere 

Notes

Acknowledgments

The authors would like to thank Prof. John Frost and Dr. Karen Draths (Michigan State University, Lansing, MI, USA) for supplying the samples and helpful discussions.

Funding information

The authors wish to thank the “University of Messina” for support through the “Research and Mobility” Project.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Haslam E. Shikimic acid: metabolism and metabolites. New York: Wiley; 1993.Google Scholar
  2. 2.
    Tan DS, Foley MA, Shair MD, Schreiber SL. Stereoselective synthesis of over two million compounds having structural features both reminiscent of natural products and compatible with miniaturized cell-based assays. J Am Chem Soc. 1998;120:8565–6.CrossRefGoogle Scholar
  3. 3.
    Kim CU, Lew W, Williams MA, Liu H, Zhang L, Swaminathan S, et al. Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active site: design, synthesis, and structural analysis of carbocyclic sialic acid analogues with potent anti-influenza activity. J Am Chem Soc. 1997;119:681–90.CrossRefPubMedGoogle Scholar
  4. 4.
    Rohloff JC, Kent KM, Postich MJ, Becker MW, Chapman HH, Kelly DE, et al. Practical total synthesis of the anti-influenza drug GS-4104. J Org Chem. 1998;63:4545–50.CrossRefGoogle Scholar
  5. 5.
    Barco A, Benetti S, De Risi C, Marchetti P, Pollini GP, Zanirato V. D-(−)-Quinic acid—a chiron store for natural product synthesis. Tetrahedron-Asymmetry. 1997;8:3515–45.CrossRefGoogle Scholar
  6. 6.
    Li K, Frost JW. Synthesis of vanillin from glucose. J Am Chem Soc. 1998;120:10545–6.CrossRefGoogle Scholar
  7. 7.
    Draths KM, Knop DR, Frost JW. Shikimic acid and quinic acid: replacing isolation from plant sources with recombinant microbial biocatalysis. J Am Chem Soc. 1999;121:1603–4.CrossRefGoogle Scholar
  8. 8.
    Knop DR, Draths KM, Chandran SS, Baker JL, Von Daeniken R, Weber W, et al. Hydroaromatic equilibration during biosynthesis of shikimic acid. J Am Chem Soc. 2001;123:10173–82.CrossRefPubMedGoogle Scholar
  9. 9.
    Chandran SS, Yi J, Draths KM, Von Daeniken R, Weber W, Frost JW. Phosphoenolpyruvate availability and the biosynthesis of shikimic acid. Biotechnol Prog. 2003;19:808–14.CrossRefPubMedGoogle Scholar
  10. 10.
    Erni F, Frei RW. Two-dimensional column liquid chromatographic technique for resolution of complex mixtures. J Chromatogr. 1978;149:561–9.CrossRefGoogle Scholar
  11. 11.
    Cortes HJ. Multidimensional chromatography. Techniques and applications. New York: Marcel Dekker; 1990.Google Scholar
  12. 12.
    Mondello L, Lewis AC, Bartle KD. Multidimensional chromatography. New York: Wiley; 2002.Google Scholar
  13. 13.
    Cohen SA, Schure MR. Multidimensional liquid chromatography. New York: Wiley; 2008.CrossRefGoogle Scholar
  14. 14.
    Stoll DR, Cohen JD, Carr PW. Fast, comprehensive online two-dimensional high performance liquid chromatography through the use of high temperature ultra-fast gradient elution reversed-phase liquid chromatography. J Chromatogr A. 2006;1122:123–37.CrossRefPubMedGoogle Scholar
  15. 15.
    Hájek T, Škeřiková V, Česla P, Výnhucalová K, Jandera P. Multidimensional LC×LC analysis of phenolic and flavone natural antioxidants with UV-electrochemical coulometric and MS detection. J Sep Sci. 2008;31:3309–28.CrossRefPubMedGoogle Scholar
  16. 16.
    Kajdan T, Cortes H, Kuppannan K, Young SA. Development of a comprehensive multidimensional liquid chromatography system with tandem mass spectrometry detection for detailed characterization of recombinant proteins. J Chromatogr A. 2008;1189:183–95.CrossRefPubMedGoogle Scholar
  17. 17.
    Julka S, Cortes HJ, Harfmann R, Bell B, Schweizer-Theobaldt A, Pursch M, et al. Quantitative characterization of solid epoxy resins using comprehensive two dimensional liquid chromatography coupled with electrospray ionization-time of flight mass spectrometry. Anal Chem. 2009;81:4271–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Donato P, Cacciola F, Sommella E, Fanali C, Dugo L, Dachà M, et al. Online comprehensive RPLC × RPLC with mass spectrometry detection for the analysis of proteome samples. Anal Chem. 2011;83:2485–91.CrossRefPubMedGoogle Scholar
  19. 19.
    Cacciola F, Delmonte P, Jaworska K, Dugo P, Mondello L, Rader JI. Employing ultra high pressure liquid chromatography as the second dimension in a comprehensive two-dimensional system for analysis of Stevia rebaudiana extracts. J Chromatogr A. 2011;15:2012–8.CrossRefGoogle Scholar
  20. 20.
    Jandera P. Optimization of comprehensive two-dimensional gradient chromatography coupling in-line hydrophilic interaction and reversed phase liquid chromatography. J Chromatogr A. 2012;1268:91–101.CrossRefPubMedGoogle Scholar
  21. 21.
    Cacciola F, Donato P, Giuffrida D, Torre G, Dugo P, Mondello L. Ultra high pressure in the second dimension of a comprehensive two-dimensional liquid chromatographic system for carotenoid separation in red chili peppers. J Chromatogr A. 2012;1255:244–51.CrossRefPubMedGoogle Scholar
  22. 22.
    Mazzi Leme G, Cacciola F, Donato P, Cavalheiro AJ, Dugo P, Mondello L. Continuous vs segmented second-dimension system gradients for comprehensive two-dimensional liquid chromatography of sugarcane (Saccharum spp.). Anal Bioanal Chem. 2014;406:4315–24.CrossRefGoogle Scholar
  23. 23.
    Willemse CM, Stander MA, Tredoux AGJ, de Villiers A. Comprehensive two-dimensional liquid chromatographic analysis of anthocyanins. J Chromatogr A. 2014;1359:189–201.CrossRefPubMedGoogle Scholar
  24. 24.
    Tomasini D, Cacciola F, Rigano F, Sciarrone D, Donato P, Beccaria M, et al. Mondello, complementary analytical liquid chromatography methods for the characterization of aqueous phase from pyrolysis of lignocellulosic biomasses. Anal Chem. 2014;86:11255–62.CrossRefPubMedGoogle Scholar
  25. 25.
    Beccaria M, Costa R, Sullini G, Grasso E, Cacciola F, Dugo P, et al. Determination of the triacylglycerol fraction in fish oil by comprehensive liquid chromatography techniques with the support of gas chromatography and mass spectrometry data. Anal Bioanal Chem. 2015;407:5211–25.CrossRefPubMedGoogle Scholar
  26. 26.
    Donato P, Rigano F, Cacciola F, Schure M, Farnetti S, Russo M, et al. Comprehensive two-dimensional liquid chromatography-tandem mass spectrometry for the simultaneous determination of wine polyphenols and target contaminants. J Chromatogr A. 2016;1458:54–62.CrossRefPubMedGoogle Scholar
  27. 27.
    Montero L, Sánchez-Camargo AP, García-Canas V, Tanniou A, Stiger-Pouvreau V, Russo M, et al. Anti-proliferative activity and chemical characterization by comprehensive two-dimensional liquid chromatography coupled to mass spectrometry of phlorotannins from the brown macroalga Sargassum muticum collected on North-Atlantic coasts. J Chromatogr A. 2016;1428:115–25.CrossRefPubMedGoogle Scholar
  28. 28.
    Cacciola F, Giuffrida D, Utczas M, Mangraviti D, Beccaria M, Donato P, et al. Analysis of the carotenoid composition and stability in various overripe fruits by comprehensive two-dimensional liquid chromatography. LC-GC Eur. 2016;29:252–6.Google Scholar
  29. 29.
    Cacciola F, Giuffrida D, Utczas M, Mangraviti D, Dugo P, Menchaca D, et al. Application of comprehensive two-dimensional liquid chromatography for carotenoid analysis in red mamey (Pouteria sapote) fruit. Food Anal Methods. 2016;9:2335–41.CrossRefGoogle Scholar
  30. 30.
    Bushey MM, Jorgenson JW. Automated instrumentation for comprehensive two-dimensional high-performance liquid chromatography of proteins. Anal Chem. 1990;62:161–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Stoll DR, Wang X, Carr PW. Comparison of the practical resolving power of one- and two-dimensional high-performance liquid chromatography analysis of metabolomic samples. Anal Chem. 2008;80:268–78.CrossRefPubMedGoogle Scholar
  32. 32.
    Vanhoenacker G, Vandenheede I, David F, Sandra P, Sandra K. Comprehensive two-dimensional liquid chromatography of therapeutic monoclonal antibody digests. Anal Bioanal Chem. 2015;407:355–66.CrossRefPubMedGoogle Scholar
  33. 33.
    Ouyang X, Leonards PEG, Tousova Z, Slobodnik J, de Boer J, Lamoree MH. Rapid screening of acetylcholinesterase inhibitors by effect-directed analysis using LC×LC fractionation, a high throughput in vitro assay, and parallel identification by time of flight mass spectrometry. Anal Chem. 2016;88:2353–60.CrossRefPubMedGoogle Scholar
  34. 34.
    Barhate CL, Regalado EL, Contrella ND, Lee J, Jo J, Makarov AA, et al. Ultrafast chiral chromatography as the second dimension in two-dimensional liquid chromatography experiments. Anal Chem. 2017;89:3545–53.CrossRefPubMedGoogle Scholar
  35. 35.
    Horsley LH, editor. Azeotropic data—III. Advances in chemistry series no. 166. Washington: American Chemical Society; 1973.Google Scholar
  36. 36.
    Moldoveanu SC, David V. Sample preparation in chromatography. J Chromatogr Libr. 2002;65:493–8.Google Scholar
  37. 37.
    Cunliffe JM, Maloney TD. Fused-core particle technology as an alternative to sub-2-micron particles to achieve high separation efficiency with low backpressure. J Sep Sci. 2007;30:3104–9.CrossRefPubMedGoogle Scholar
  38. 38.
    Fekete S, Fekete J, Molnár I, Ganzler K. Rapid high performance liquid chromatography method development with high prediction accuracy, using 5 cm long narrow bore columns packed with sub 2 μm particles and design space computer modeling. J Chromatogr A. 2009;1216:7816–23.CrossRefPubMedGoogle Scholar
  39. 39.
    Hayes R, Ahmed A, Edge T, Zhang H. Core-shell particles: preparation, fundamentals and applications in high performance liquid chromatography. J Chromatogr A. 2014;1357:36–52.CrossRefPubMedGoogle Scholar
  40. 40.
    Acquaro VR, Lanc FM¸ Costa Queiroz ME. Evaluation of superficially porous and fully porous columns for analysis of drugs in plasma samples by UHPLC-MS/MS. J Chromatogr B 2017; 1048:1–9.CrossRefGoogle Scholar
  41. 41.
    Murphy RE, Schure MR, Foley JP. Effect of sampling rate on resolution in comprehensive two-dimensional liquid chromatography. Anal Chem. 1998;70:1585–94.CrossRefGoogle Scholar
  42. 42.
    Schellinger AP, Stoll DR, Carr PW. High speed gradient elution reversed-phase liquid chromatography. J Chromatogr A. 2005;1064:143–56.CrossRefPubMedGoogle Scholar
  43. 43.
    Neue UW. Theory of peak capacity in gradient elution. J Chromatogr A. 2005;1079:153–61.CrossRefPubMedGoogle Scholar
  44. 44.
    Gu H, Huang Y, Carr PW. Peak capacity optimization in comprehensive two dimensional liquid chromatography: a practical approach. J Chromatogr A. 2011;1218:64–73.CrossRefPubMedGoogle Scholar
  45. 45.
    Camenzuli M, Schoenmakers PJ. Anal Chim Acta. 2014;838:93–101.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Francesco Cacciola
    • 1
  • Domenica Mangraviti
    • 2
  • Francesca Rigano
    • 3
  • Paola Donato
    • 1
  • Paola Dugo
    • 2
    • 3
    • 4
  • Luigi Mondello
    • 2
    • 3
    • 4
    Email author
  • Hernan J. Cortes
    • 5
  1. 1.Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e FunzionaliUniversity of MessinaMessinaItaly
  2. 2.Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed AmbientaliUniversity of MessinaMessinaItaly
  3. 3.Chromaleont s.r.l., c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed AmbientaliUniversity of MessinaMessinaItaly
  4. 4.Unit of Food Science and Nutrition, Department of MedicineUniversity Campus Bio-Medico of RomeRomeItaly
  5. 5.H. J. Cortes Consulting, LLC.MidlandUSA

Personalised recommendations