Advertisement

Analytical and Bioanalytical Chemistry

, Volume 410, Issue 2, pp 491–499 | Cite as

LC-MS/MS imaging with thermal film-based laser microdissection

  • Michiko Oya
  • Hiromi SuzukiEmail author
  • Andrea Roxanne J. Anas
  • Koichi Oishi
  • Kenji Ono
  • Shun Yamaguchi
  • Megumi Eguchi
  • Makoto Sawada
Research Paper

Abstract

Mass spectrometry (MS) imaging is a useful tool for direct and simultaneous visualization of specific molecules. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is used to evaluate the abundance of molecules in tissues using sample homogenates. To date, however, LC-MS/MS has not been utilized as an imaging tool because spatial information is lost during sample preparation. Here we report a new approach for LC-MS/MS imaging using a thermal film-based laser microdissection (LMD) technique. To isolate tissue spots, our LMD system uses a 808-nm near infrared laser, the diameter of which can be freely changed from 2.7 to 500 μm; for imaging purposes in this study, the diameter was fixed at 40 μm, allowing acquisition of LC-MS/MS images at a 40-μm resolution. The isolated spots are arranged on a thermal film at 4.5-mm intervals, corresponding to the well spacing on a 384-well plate. Each tissue spot is handled on the film in such a manner as to maintain its spatial information, allowing it to be extracted separately in its individual well. Using analytical LC-MS/MS in combination with the spatial information of each sample, we can reconstruct LC-MS/MS images. With this imaging technique, we successfully obtained the distributions of pilocarpine, glutamate, γ-aminobutyric acid, acetylcholine, and choline in a cross-section of mouse hippocampus. The protocol we established in this study is applicable to revealing the neurochemistry of pilocarpine model of epilepsy. Our system has a wide range of uses in fields such as biology, pharmacology, pathology, and neuroscience.

Graphical abstract

Schematic Indication of LMD-LC-MS/MS imaging.

Keywords

Imaging mass spectrometry LC-MS/MS Laser microdissection Thermal film Neurotransmitter Hippocampus 

Notes

Acknowledgements

This work is supported by Research Grants for Development of System and Technology for Advanced Measurement and Analysis (system development type) from the Japan Science and Technology Agency (JST-SENTAN Program).

Compliance with ethical standards

All animal procedures were approved by the Animal Use and Care Committees of Nagoya University (No.17231) and conducted in accordance with the guidelines of the Animal Use and Care Committees of Nagoya University.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Norris JL, Caprioli RM. Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. Chem Rev. 2013;  https://doi.org/10.1021/cr3004295.
  2. 2.
    Sugiura Y, Zaima N, Setou M, Ito S, Yao I. Visualization of acetylcholine distribution in central nervous system tissue sections by tandem imaging mass spectrometry. Anal Bioanal Chem. 2012;  https://doi.org/10.1007/s00216-012-5988-5.
  3. 3.
    Shariatgorji M, Nilsson A, Goodwin RJ, Kallback P, Schintu N, Zhang X, et al. Direct targeted quantitative molecular imaging of neurotransmitters in brain tissue sections. Neuron. 2014;  https://doi.org/10.1016/j.neuron.2014.10.011.
  4. 4.
    Cobice DF, Goodwin RJ, Andren PE, Nilsson A, Mackay CL, Andrew R. Future technology insight: mass spectrometry imaging as a tool in drug research and development. Br J Pharmacol. 2015;  https://doi.org/10.1111/bph.13135.
  5. 5.
    Heurling K, Leuzy A, Jonasson M, Frick A, Zimmer ER, Nordberg A, et al. Quantitative positron emission tomography in brain research. Brain Res. 2017;  https://doi.org/10.1016/j.brainres.2017.06.022.
  6. 6.
    Solon EG, Schweitzer A, Stoeckli M, Prideaux B. Autoradiography, MALDI-MS, and SIMS-MS imaging in pharmaceutical discovery and development. AAPS J. 2010;  https://doi.org/10.1208/s12248-009-9158-4.
  7. 7.
    Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, Boe AF, Boguski MS, Brockway KS, Byrnes EJ, Chen L, Chen L, Chen TM, Chin MC, Chong J, Crook BE, Czaplinska A, Dang CN, Datta S, Dee NR, Desaki AL, Desta T, Diep E, Dolbeare TA, Donelan MJ, Dong HW, Dougherty JG, Duncan BJ, Ebbert AJ, Eichele G, Estin LK, Faber C, Facer BA, Fields R, Fischer SR, Fliss TP, Frensley C, Gates SN, Glattfelder KJ, Halverson KR, Hart MR, Hohmann JG, Howell MP, Jeung DP, Johnson RA, Karr PT, Kawal R, Kidney JM, Knapik RH, Kuan CL, Lake JH, Laramee AR, Larsen KD, Lau C, Lemon TA, Liang AJ, Liu Y, Luong LT, Michaels J, Morgan JJ, Morgan RJ, Mortrud MT, Mosqueda NF, Ng LL, Ng R, Orta GJ, Overly CC, Pak TH, Parry SE, Pathak SD, Pearson OC, Puchalski RB, Riley ZL, Rockett HR, Rowland SA, Royall JJ, Ruiz MJ, Sarno NR, Schaffnit K, Shapovalova NV,Sivisay T, Slaughterbeck CR, Smith SC, Smith KA, Smith BI, Sodt AJ, Stewart NN, Stumpf KR, Sunkin SM, Sutram M, Tam A, Teemer CD, Thaller C, Thompson CL, Varnam LR, Visel A, Whitlock RM, Wohnoutka PE, Wolkey CK, Wong VY, Wood M, Yaylaoglu MB, Young RC, Youngstrom BL, Yuan XF, Zhang B, Zwingman TA, Jones AR. Genome-wide atlas of gene expression in the adult mouse brain. Nature. 2007;  https://doi.org/10.1038/nature05453.
  8. 8.
    Giepmans BN, Adams SR, Ellisman MH, Tsien RY. The fluorescent toolbox for assessing protein location and function. Science. 2006;  https://doi.org/10.1126/science.1124618.
  9. 9.
    McDonnell LA, Heeren RM (2007) Imaging mass spectrometry. Mass Spectrom Rev doi: https://doi.org/10.1002/mas.20124
  10. 10.
    Khatib-Shahidi S, Andersson M, Herman JL, Gillespie TA, Caprioli RM ( 2006) Direct molecular analysis of whole-body animal tissue sections by imaging MALDI mass spectrometry. Anal Chem doi: https://doi.org/10.1021/ac060788p
  11. 11.
    Gode D, Volmer DA. Lipid imaging by mass spectrometry – a review. Analyst. 2013;  https://doi.org/10.1039/c2an36337b.
  12. 12.
    Caprioli RM, Farmer TB, Gile J. Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal Chem. 1997;69:4751–60.CrossRefGoogle Scholar
  13. 13.
    Liebl H. Ion microprobe mass analyzer. J Appl Phys. 1967;  https://doi.org/10.1063/1.1709314.
  14. 14.
    Levisetti R, Hallegot P, Girod C, Chabala JM, Li J, Sodonis A, et al. Critical issues in the application of a gallium probe to high-resolution secondary ion imaging. Surf Sci. 1991;  https://doi.org/10.1016/0039-6028(91)90399-D.
  15. 15.
    Takats Z, Wiseman JM, Gologan B, Cooks RG. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science. 2004;  https://doi.org/10.1126/science.1104404.
  16. 16.
    Kertesz V, Van Berkel GJ. Fully automated liquid extraction-based surface sampling and ionization using a chip-based robotic nanoelectrospray platform. J Mass Spectrom. 2010;  https://doi.org/10.1002/jms.1709.
  17. 17.
    Lagarrigue M, Becker M, Lavigne R, Deininger SO, Walch A, Aubry F, et al. Revisiting rat spermatogenesis with MALDI imaging at 20-microm resolution. Mol Cell Proteom. 2011;  https://doi.org/10.1074/mcp.M110.005991.
  18. 18.
    Nazari M, Muddiman DC. Cellular-level mass spectrometry imaging using infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) by oversampling. Anal Bioanal Chem. 2015;  https://doi.org/10.1007/s00216-014-8376-5.
  19. 19.
    Tholey A, Heinzle E. Ionic (liquid) matrices for matrix-assisted laser desorption/ionization mass spectrometry-applications and perspectives. Anal Bioanal Chem. 2006;  https://doi.org/10.1007/s00216-006-0600-5.
  20. 20.
    Shariatgorji M, Strittmatter N, Nilsson A, Kallback P, Alvarsson A, Zhang X, et al. Simultaneous imaging of multiple neurotransmitters and neuroactive substances in the brain by desorption electrospray ionization mass spectrometry. Neuroimage. 2016;  https://doi.org/10.1016/j.neuroimage.2016.05.004.
  21. 21.
    Swales JG, Strittmatter N, Tucker JW, Clench MR, Webborn PJ, Goodwin RJ. Spatial quantitation of drugs in tissues using liquid extraction surface analysis mass spectrometry imaging. Sci Rep. 2016;  https://doi.org/10.1038/srep37648.
  22. 22.
    Berman J, Halm K, Adkison K, Shaffer J. Simultaneous pharmacokinetic screening of a mixture of compounds in the dog using API LC/MS/MS analysis for increased throughput. J Med Chem. 1997;  https://doi.org/10.1021/jm960702s.
  23. 23.
    Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR, et al. Laser capture microdissection. Science. 1996;274:998–1001.CrossRefGoogle Scholar
  24. 24.
    Simone NL, Bonner RF, Gillespie JW, Emmert-Buck MR, Liotta LA. Laser-capture microdissection: opening the microscopic frontier to molecular analysis. Trends Genet. 1998;14:272–6.CrossRefGoogle Scholar
  25. 25.
    Espina V, Wulfkuhle JD, Calvert VS, VanMeter A, Zhou W, Coukos G, et al. Laser-capture microdissection. Nat Protoc. 2006;  https://doi.org/10.1038/nprot.2006.85.
  26. 26.
    Turski WA, Cavalheiro EA, Schwarz M, Czuczwar SJ, Kleinrok Z, Turski L. Limbic seizures produced by pilocarpine in rats: behavioral, electroencephalographic, and neuropathological study. Behav Brain Res. 1983;9:315–35.CrossRefGoogle Scholar
  27. 27.
    Eguchi M, Yamaguchi S. In vivo and in vitro visualization of gene expression dynamics over extensive areas of the brain. Neuroimage. 2006;  https://doi.org/10.1016/j.neuroimage.2008.10.046.
  28. 28.
    Turski WA, Cavalheiro EA, Bortolotto ZA, Mello LM, Schwarz M, Turski L. Seizures produced by pilocarpine in mice: a behavioral, electroencephalographic and morphological analysis. Brain Res. 1984;321:237–53.CrossRefGoogle Scholar
  29. 29.
    Hillert MH, Imran I, Zimmermann M, Lau H, Weinfurter S, Klein J. Dynamics of hippocampal acetylcholine release during lithium-pilocarpine-induced status epilepticus in rats. J Neurochem. 2014;  https://doi.org/10.1111/jnc.12787.
  30. 30.
    Mazzuferi M, Kumar G, Rospo C, Kaminski RM. Rapid epileptogenesis in the mouse pilocarpine model: video-EEG, pharmacokinetic and histopathological characterization. Exp Neurol. 2014;  https://doi.org/10.1016/j.expneurol.2012.08.022.
  31. 31.
    Romermann K, Bankstahl JP, Loscher W, Bankstahl M. Pilocarpine-induced convulsive activity is limited by multidrug transporters at the rodent blood-brain barrier. J Pharmacol Exp Ther. 2015;  https://doi.org/10.1124/jpet.114.221952.
  32. 32.
    Meurs A, Clinckers R, Ebinger G, Michotte Y, Smolders I. Seizure activity and changes in hippocampal extracellular glutamate, GABA, dopamine and serotonin. Epilepsy Res. 2008;  https://doi.org/10.1016/j.eplepsyres.2007.10.007.

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Michiko Oya
    • 1
    • 2
  • Hiromi Suzuki
    • 1
    • 2
    Email author
  • Andrea Roxanne J. Anas
    • 1
  • Koichi Oishi
    • 1
  • Kenji Ono
    • 1
    • 2
  • Shun Yamaguchi
    • 3
    • 4
  • Megumi Eguchi
    • 3
  • Makoto Sawada
    • 1
    • 2
  1. 1.Department of Brain Function, Division of Stress Adaptation and Protection, Research Institute of Environmental MedicineNagoya UniversityNagoyaJapan
  2. 2.Departments of Molecular PharmacokineticsNagoya University Graduate School of MedicineNagoyaJapan
  3. 3.Division of Morphological NeuroscienceGifu University Graduate School of MedicineGifuJapan
  4. 4.Center for Highly Advanced Integration of Nano and Life Sciences, Gifu UniversityGifuJapan

Personalised recommendations