Advertisement

Analytical and Bioanalytical Chemistry

, Volume 410, Issue 3, pp 747–771 | Cite as

Bioinspired recognition elements for mycotoxin sensors

  • Riikka Peltomaa
  • Elena Benito-Peña
  • María C. Moreno-BondiEmail author
Review
Part of the following topical collections:
  1. ABCs 16th Anniversary

Abstract

Mycotoxins are low molecular weight molecules produced as secondary metabolites by filamentous fungi that can be found as natural contaminants in many foods and feeds. These toxins have been shown to have adverse effects on both human and animal health, and are the cause of significant economic losses worldwide. Sensors for mycotoxin analysis have traditionally applied elements of biological origin for the selective recognition purposes. However, since the 1970s there has been an exponential growth in the use of genetically engineered or synthetic biomimetic recognition elements that allow some of the limitations associated with the use of natural receptors for the analyses of these toxins to be circumvented. This review provides an overview of recent advances in the application of bioinspired recognition elements, including recombinant antibodies, peptides, aptamers, and molecularly imprinted polymers, to the development of sensors for mycotoxins based on different transduction elements.

Graphical abstract

Novel analytical methods based on bioinspired recognition elements, such as recombinant antibodies, peptides, aptamers, and molecularly imprinted polymers, can improve the detection of mycotoxins and provide better tools than their natural counterparts to ensure food safety

Keywords

Mycotoxin Recognition element Recombinant antibody Peptide Aptamer Molecularly imprinted polymer 

Notes

Acknowledgements

This work was funded by the European Union (SAMOSS; FP7-PEOPLE-2013-ITN; contract 607590) and MINECO/FEDER (CTQ2015-69278-C2-1-R).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. 1.
    das Chagas Oliveira Freire F, Bereza da Rocha ME. Impact of mycotoxins on human health. In: Mérillon J-M, Ramawat KG, editors. Fungal metabolites. Cham: Springer; 2016. p. 269–1.  https://doi.org/10.1007/978-3-319-19456-1_21-1.Google Scholar
  2. 2.
    Goyal S, Ramawat KG, Mérillon J-M. Different shades of fungal metabolites: An overview. In: Mérillon J-M, Ramawat KG, editors. Fungal metabolites. Cham: Springer; 2017. p. 1–29.  https://doi.org/10.1007/978-3-319-25001-4_34.Google Scholar
  3. 3.
    Bennett JW, Klich M. Mycotoxins. Clin Microbiol Rev. 2003;16:497–516.CrossRefGoogle Scholar
  4. 4.
    Pitt JI, Miller JD. A concise history of mycotoxin research. J Agric Food Chem. 2016;  https://doi.org/10.1021/acs.jafc.6b04494.
  5. 5.
    Turner NW, Subrahmanyam S, Piletsky SA. Analytical methods for determination of mycotoxins: a review. Anal Chim Acta. 2009;632:168–80.  https://doi.org/10.1016/j.aca.2008.11.010.CrossRefGoogle Scholar
  6. 6.
    Yu J, Payne GA, Campbell BC, Guo B, Cleveland TE, Robens JF, et al. Mycotoxin production and prevention of aflatoxin contamination in food and feed. In: Goldman GH, Osmani SA, editors. The Aspergilli: genomics, medical aspects, biotechnology, and research methods. Boca Raton: CRC Press; 2007. p. 457–72.  https://doi.org/10.1201/9781420008517.ch27.Google Scholar
  7. 7.
    Wilson D, Williams JT, Wild C, Stroka J, Shephard G, Schaafsma A, et al. Public health strategies for reducing aflatoxin exposure in developing countries: a workgroup report. Environ Health Perspect. 2006;  https://doi.org/10.1289/ehp.9302.
  8. 8.
    Peraica M, Radić B, Lucić A, Pavlović M. Toxic effects of mycotoxins in humans. Bull World Health Organ. 1999;77:754–66.Google Scholar
  9. 9.
    Bailly JD, Guerre P. Mycotoxin analysis in poultry and processed meats. In: Nollet LML, Toldrá F, editors. Safety analysis of foods of animal origin. Boca Raton: CRC Press; 2010. p. 77–123.CrossRefGoogle Scholar
  10. 10.
    Berthiller F, Crews C, Dall’Asta C, De Saeger S, Haesaert G, Karlovsky P, Oswald IP, Seefelder W, Speijers G, Stroka J. Masked mycotoxins: a review. Mol Nutr Food Res 2013;57:165–186. doi: https://doi.org/10.1002/mnfr.201100764.
  11. 11.
    European Commission. Commission Regulation (EC) No 1881/2006. Off J Eur Union. 2006;L364:5–24.Google Scholar
  12. 12.
    European Commission. Commission Regulation (EC) No 1126/2007. Off J Eur Union. 2007;L255:14–7.Google Scholar
  13. 13.
    European Commission. Commission Recommendation (EC) No 165/2013. Off J Eur Union. 2013;L91:12–5.Google Scholar
  14. 14.
    European Commission. Commission Regulation (EC) No 105/2010. Off J Eur Union. 2010;L35:7–8.Google Scholar
  15. 15.
    European Commission. Commission Regulation (EC) No 165/2010. Off J Eur Union. 2010;L50:8–12.Google Scholar
  16. 16.
    European Commission. Commission Directive (EC) No 32/2002/EC. 2002.Google Scholar
  17. 17.
    European Commission. Commission Recommendation (EC) No 576/2006. Off J Eur Union. 2006;L229:7–10.Google Scholar
  18. 18.
    Berthiller F, Brera C, Crews C, Iha MH, Krska R, Lattanzio VMT, et al. Developments in mycotoxin analysis: an update for 2014–2015. World Mycotoxin J. 2016;9:5–30.  https://doi.org/10.3920/wmj2015.1998.CrossRefGoogle Scholar
  19. 19.
    Bryla M, Roszko M, Szymczyk K, Jedrzejczak R, Obiedzinski MW, Sekul J. Fumonisins in plant-origin food and fodder - a review. Food Addit Contam Part A. 2013;30:1626–40.  https://doi.org/10.1080/19440049.2013.809624.CrossRefGoogle Scholar
  20. 20.
    Senyuva HZ, Gilbert J, Stroka J. Determination of fumonisins B1 and B2 in corn by LC/MS with immunoaffinity column cleanup: Interlaboratory study. J AOAC Int. 2010;93:611–21.Google Scholar
  21. 21.
    Solfrizzo M, De Girolamo A, Gambacorta L, Visconti A, Stroka J, van Egmond HP. Determination of fumonisins B1 and B2 in corn-based foods for infants and young children by LC with immunoaffinity column cleanup: Interlaboratory validation study. J AOAC Int 2011;94:900–908.Google Scholar
  22. 22.
    Goryacheva IY, De Saeger S, Eremin SA, Van Peteghem C. Immunochemical methods for rapid mycotoxin detection: evolution from single to multiple analyte screening: a review. Food Addit Contam 2007;24:1169–1183. doi: https://doi.org/10.1080/02652030701557179.
  23. 23.
    Köppen R, Koch M, Siegel D, Merkel S, Maul R, Nehls I. Determination of mycotoxins in foods: Current state of analytical methods and limitations. Appl Microbiol Biotechnol. 2010;86:1595–612.  https://doi.org/10.1007/s00253-010-2535-1.CrossRefGoogle Scholar
  24. 24.
    Zourob M. Recognition receptors in biosensors. New York: Springer; 2010.Google Scholar
  25. 25.
    Skottrup PD. Small biomolecular scaffolds for improved biosensor performance. Anal Biochem. 2010;406:1–7.  https://doi.org/10.1016/j.ab.2010.06.042.CrossRefGoogle Scholar
  26. 26.
    Wild D. The immunoassay handbook: theory and applications of ligand binding, ELISA and related techniques. 4th ed. Oxford: Elsevier; 2013.Google Scholar
  27. 27.
    Byrne B, Stack E, Gilmartin N, O'Kennedy R. Antibody-based sensors: principles, problems and potential for detection of pathogens and associated toxins. Sensors (Basel). 2009;9:4407–45.  https://doi.org/10.3390/s90604407.CrossRefGoogle Scholar
  28. 28.
    Langone JJ, Van Vunakis H. Aflatoxin B; specific antibodies and their use in radioimmunoassay. J Natl Cancer Inst 1976;56:591–595.Google Scholar
  29. 29.
    Sun ZT. Monoclonal antibody against aflatoxin B1 and its potential application. Zhonghua Zhong Liu Za Zhi. 1983;5:401–5.Google Scholar
  30. 30.
    Groopman JD, Trudel LJ, Donahue PR, Marshak-Rothstein A, Wogan GN. High-affinity monoclonal antibodies for aflatoxins and their application to solid-phase immunoassays. Proc Natl Acad Sci U S A. 1984;81:7728–31.CrossRefGoogle Scholar
  31. 31.
    Vidal JC, Bertolín JR, Ezquerra A, Hernández S, Castillo JR. Rapid simultaneous extraction and magnetic particle-based enzyme immunoassay for the parallel determination of ochratoxin A, fumonisin B1 and deoxynivalenol mycotoxins in cereal samples. Anal Methods. 2017;9:3602–11.  https://doi.org/10.1039/c7ay00386b.CrossRefGoogle Scholar
  32. 32.
    Kong W, Xiao C, Ying G, Liu X, Zhao X, Wang R, et al. Magnetic microspheres-based cytometric bead array assay for highly sensitive detection of ochratoxin A. Biosens Bioelectron. 2017;94:420–8.  https://doi.org/10.1016/j.bios.2017.03.025.CrossRefGoogle Scholar
  33. 33.
    Urusov AE, Petrakova AV, Vozniak MV, Zherdev AV, Dzantiev BB. Rapid immunoenzyme assay of aflatoxin B1 using magnetic nanoparticles. Sensors (Basel). 2014;14:21843–57.  https://doi.org/10.3390/s141121843.CrossRefGoogle Scholar
  34. 34.
    Beloglazova NV, Speranskaya ES, Wu A, Wang Z, Sanders M, Goftman VV, Zhang D, Goryacheva IY, De Saeger S. Novel multiplex fluorescent immunoassays based on quantum dot nanolabels for mycotoxins determination. Biosens Bioelectron 2014;62:59–65. doi: https://doi.org/10.1016/j.bios.2014.06.021.
  35. 35.
    Li C, Wen K, Mi T, Zhang X, Zhang H, Zhang S, et al. A universal multi-wavelength fluorescence polarization immunoassay for multiplexed detection of mycotoxins in maize. Biosens Bioelectron. 2016;79:258–65.  https://doi.org/10.1016/j.bios.2015.12.033.CrossRefGoogle Scholar
  36. 36.
    Wu S, Duan N, Zhu C, Ma X, Wang M, Wang Z. Magnetic nanobead-based immunoassay for the simultaneous detection of aflatoxin B1 and ochratoxin A using upconversion nanoparticles as multicolor labels. Biosens Bioelectron. 2011;30:35–42.  https://doi.org/10.1016/j.bios.2011.08.023.CrossRefGoogle Scholar
  37. 37.
    Karczmarczyk A, Dubiak-Szepietowska M, Vorobii M, Rodriguez-Emmenegger C, Dostalek J, Feller KH. Sensitive and rapid detection of aflatoxin M1 in milk utilizing enhanced SPR and p(HEMA) brushes. Biosens Bioelectron. 2016;81:159–65.  https://doi.org/10.1016/j.bios.2016.02.061.CrossRefGoogle Scholar
  38. 38.
    Joshi S, Segarra-Fas A, Peters J, Zuilhof H, van Beek TA, Nielen MW. Multiplex surface plasmon resonance biosensing and its transferability towards imaging nanoplasmonics for detection of mycotoxins in barley. Analyst 2016;141:1307–1318. doi: https://doi.org/10.1039/c5an02512e.
  39. 39.
    Ricciardi C, Castagna R, Ferrante I, Frascella F, Marasso SL, Ricci A, et al. Development of a microcantilever-based immunosensing method for mycotoxin detection. Biosens Bioelectron. 2013;40:233–9.  https://doi.org/10.1016/j.bios.2012.07.029.CrossRefGoogle Scholar
  40. 40.
    Ma H, Sun J, Zhang Y, Bian C, Xia S, Zhen T. Label-free immunosensor based on one-step electrodeposition of chitosan-gold nanoparticles biocompatible film on Au microelectrode for determination of aflatoxin B1 in maize. Biosens Bioelectron. 2016;80:222–9.  https://doi.org/10.1016/j.bios.2016.01.063.CrossRefGoogle Scholar
  41. 41.
    Bazin I, Tria SA, Hayat A, Marty JL. New biorecognition molecules in biosensors for the detection of toxins. Biosens Bioelectron. 2017;87:285–98.  https://doi.org/10.1016/j.bios.2016.06.083.CrossRefGoogle Scholar
  42. 42.
    Shephard GS. Current status of mycotoxin analysis: a critical review. J AOAC Int. 2016;99:842–8.  https://doi.org/10.5740/jaoacint.16-0111.CrossRefGoogle Scholar
  43. 43.
    Bradbury AR, Sidhu S, Dubel S, McCafferty J. Beyond natural antibodies: the power of in vitro display technologies. Nat Biotechnol. 2011;29:245–54.  https://doi.org/10.1038/nbt.1791.CrossRefGoogle Scholar
  44. 44.
    Tangni EK, Motte JC, Callebaut A, Pussemier L. Cross-reactivity of antibodies in some commercial deoxynivalenol test kits against some fusariotoxins. J Agric Food Chem. 2010;58:12625–33.  https://doi.org/10.1021/jf103025e.CrossRefGoogle Scholar
  45. 45.
    Zachariasova M, Hajslova J, Kostelanska M, Poustka J, Krplova A, Cuhra P, et al. Deoxynivalenol and its conjugates in beer: A critical assessment of data obtained by enzyme-linked immunosorbent assay and liquid chromatography coupled to tandem mass spectrometry. Anal Chim Acta. 2008;625:77–86.  https://doi.org/10.1016/j.aca.2008.07.014.CrossRefGoogle Scholar
  46. 46.
    Janeway CA, Travers P, Walport M, Shlomchik MJ. Immunobiology: the immune system in health and disease. 5th ed. New York: Garland Science; 2001.Google Scholar
  47. 47.
    Peltomaa R, López-Perolio I, Benito-Peña E, Barderas R, Moreno-Bondi MC. Application of bacteriophages in sensor development. Anal Bioanal Chem. 2016;408:1805–28.  https://doi.org/10.1007/s00216-015-9087-2.CrossRefGoogle Scholar
  48. 48.
    Vincke C, Muyldermans S. Introduction to heavy chain antibodies and derived nanobodies. Methods Mol Biol. 2012;911:15–26.  https://doi.org/10.1007/978-1-61779-968-6_2.Google Scholar
  49. 49.
    Holliger P, Hudson PJ. Engineered antibody fragments and the rise of single domains. Nat Biotechnol. 2005;23:1126–36.  https://doi.org/10.1038/nbt1142.CrossRefGoogle Scholar
  50. 50.
    Charlton KA. Expression and isolation of recombinant antibody fragments in E. coli. In: Lo BKC, editor. Antibody engineering: methods and protocols. Totowa: Humana; 2004. p. 245–54.  https://doi.org/10.1385/1-59259-666-5:245.Google Scholar
  51. 51.
    Romanazzo D, Ricci F, Volpe G, Elliott CT, Vesco S, Kroeger K, Moscone D, Stroka J, Van Egmond H, Vehniainen M, Palleschi G. Development of a recombinant Fab-fragment based electrochemical immunosensor for deoxynivalenol detection in food samples. Biosens Bioelectron 2010;25:2615–2621. doi: https://doi.org/10.1016/j.bios.2010.04.029.
  52. 52.
    Min W-K, Kweon D-H, Park K, Park Y-C, Seo J-H. Characterisation of monoclonal antibody against aflatoxin B1 produced in hybridoma 2C12 and its single-chain variable fragment expressed in recombinant Escherichia coli. Food Chem. 2011;126:1316–23.  https://doi.org/10.1016/j.foodchem.2010.11.088.CrossRefGoogle Scholar
  53. 53.
    Maragos CM, Li L, Chen D. Production and characterization of a single chain variable fragment (scFv) against the mycotoxin deoxynivalenol. Food Agric Immunol. 2012;23:51–67.  https://doi.org/10.1080/09540105.2011.598921.CrossRefGoogle Scholar
  54. 54.
    Min WK, Cho YJ, Park JB, Bae YH, Kim EJ, Park K, et al. Production and characterization of monoclonal antibody and its recombinant single chain variable fragment specific for a food-born mycotoxin, fumonisin B1. Bioprocess Biosyst Eng. 2010;33:109–15.  https://doi.org/10.1007/s00449-009-0350-9.CrossRefGoogle Scholar
  55. 55.
    Hu ZQ, Li HP, Wu P, Li YB, Zhou ZQ, Zhang JB, et al. An affinity improved single-chain antibody from phage display of a library derived from monoclonal antibodies detects fumonisins by immunoassay. Anal Chim Acta. 2015;867:74–82.  https://doi.org/10.1016/j.aca.2015.02.014.CrossRefGoogle Scholar
  56. 56.
    Li X, Li P, Lei J, Zhang Q, Zhang W, Li C. A simple strategy to obtain ultra-sensitive single-chain fragment variable antibodies for aflatoxin detection. RSC Adv. 2013;3:22367.  https://doi.org/10.1039/c3ra42706d.CrossRefGoogle Scholar
  57. 57.
    Hoogenboom HR. Selecting and screening recombinant antibody libraries. Nat Biotechnol. 2005;23:1105–16.  https://doi.org/10.1038/nbt1126.CrossRefGoogle Scholar
  58. 58.
    McCafferty J, Griffiths AD, Winter G, Chiswell DJ. Phage antibodies: filamentous phage displaying antibody variable domains. Nature. 1990;348:552–4.  https://doi.org/10.1038/348552a0.CrossRefGoogle Scholar
  59. 59.
    Barbas CF, Burton DR, Silverman GJ. Phage display: a laboratory manual. Cold Spring Harbor: Cold Spring Harbor Press; 2001.Google Scholar
  60. 60.
    Boder ET, Wittrup KD. Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol. 1997;15:553–7.  https://doi.org/10.1038/nbt0697-553.CrossRefGoogle Scholar
  61. 61.
    Hanes J, Pluckthun A. In vitro selection and evolution of functional proteins by using ribosome display. Proc Natl Acad Sci U S A. 1997;94:4937–42.CrossRefGoogle Scholar
  62. 62.
    Levin AM, Weiss GA. Optimizing the affinity and specificity of proteins with molecular display. Mol BioSyst. 2006;2:49–57.  https://doi.org/10.1039/b511782h.CrossRefGoogle Scholar
  63. 63.
    Huse WD, Sastry L, Iverson SA, Kang AS, Alting-Mees M, Burton DR, et al. Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. Science. 1989;246:1275–81.CrossRefGoogle Scholar
  64. 64.
    Hu Z-Q, Li H-P, Liu J-L, Xue S, Gong A-D, Zhang J-B, et al. Production of a phage-displayed mouse ScFv antibody against fumonisin B1 and molecular docking analysis of their interactions. Biotechnol Bioprocess Eng. 2016;21:134–43.  https://doi.org/10.1007/s12257-015-0495-0.CrossRefGoogle Scholar
  65. 65.
    Tullila A, Nevanen TK. Utilization of multi-immunization and multiple selection strategies for isolation of hapten-specific antibodies from recombinant antibody phage display libraries. Int J Mol Sci. 2017;18  https://doi.org/10.3390/ijms18061169.
  66. 66.
    Edupuganti SR, Edupuganti OP, O'Kennedy R. Generation of anti-zearalenone scFv and its incorporation into surface plasmon resonance-based assay for the detection of zearalenone in sorghum. Food Control. 2013;34:668–74.  https://doi.org/10.1016/j.foodcont.2013.06.013.CrossRefGoogle Scholar
  67. 67.
    Liu X, Xu Y, Xiong YH, Tu Z, Li YP, He ZY, et al. VHH phage-based competitive real-time immuno-polymerase chain reaction for ultrasensitive detection of ochratoxin A in cereal. Anal Chem. 2014;86:7471–7.  https://doi.org/10.1021/ac501202d.CrossRefGoogle Scholar
  68. 68.
    Vaughan TJ, Williams AJ, Pritchard K, Osbourn JK, Pope AR, Earnshaw JC, et al. Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat Biotechnol. 1996;3:309–14.  https://doi.org/10.1038/nbt0396-309.CrossRefGoogle Scholar
  69. 69.
    Griffiths AD, Williams SC, Hartley O, Tomlinson IM, Waterhouse P, Crosby WL, et al. Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J. 1994;13:3245–60.Google Scholar
  70. 70.
    Persson H, Lantto J, Ohlin M. A focused antibody library for improved hapten recognition. J Mol Biol. 2006;357:607–20.  https://doi.org/10.1016/j.jmb.2006.01.004.CrossRefGoogle Scholar
  71. 71.
    Lauer B, Ottleben I, Jacobsen HJ, Reinard T. Production of a single-chain variable fragment antibody against fumonisin B1. J Agric Food Chem. 2005;53:899–904.  https://doi.org/10.1021/jf048651s.CrossRefGoogle Scholar
  72. 72.
    Yang L, Ding H, Gu Z, Zhao J, Chen H, Tian F, et al. Selection of single chain fragment variables with direct coating of aflatoxin B1 to enzyme-linked immunosorbent assay plates. J Agric Food Chem. 2009;57:8927–32.  https://doi.org/10.1021/jf9019536.CrossRefGoogle Scholar
  73. 73.
    Min WK, Kim SG, Seo JH. Affinity maturation of single-chain variable fragment specific for aflatoxin B1 using yeast surface display. Food Chem. 2015;188:604–11.  https://doi.org/10.1016/j.foodchem.2015.04.117.CrossRefGoogle Scholar
  74. 74.
    He T, Wang Y, Li P, Zhang Q, Lei J, Zhang Z, et al. Nanobody-based enzyme immunoassay for aflatoxin in agro-products with high tolerance to cosolvent methanol. Anal Chem. 2014;86:8873–80.  https://doi.org/10.1021/ac502390c.CrossRefGoogle Scholar
  75. 75.
    Liu X, Xu Y, Wan DB, Xiong YH, He ZY, Wang XX, et al. Development of a nanobody-alkaline phosphatase fusion protein and its application in a highly sensitive direct competitive fluorescence enzyme immunoassay for detection of ochratoxin A in cereal. Anal Chem. 2015;87:1387–94.  https://doi.org/10.1021/ac504305z.CrossRefGoogle Scholar
  76. 76.
    Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, et al. Naturally occurring antibodies devoid of light chains. Nature. 1993;363:446–8.CrossRefGoogle Scholar
  77. 77.
    Dumoulin M, Conrath K, Van Meirhaeghe A, Meersman F, Heremans K, Frenken LG, Muyldermans S, Wyns L, Matagne A. Single-domain antibody fragments with high conformational stability. Protein Sci 2002;11:500–515. doi: https://doi.org/10.1110/ps.34602.
  78. 78.
    Liu X, Tang Z, Duan Z, He Z, Shu M, Wang X, et al. Nanobody-based enzyme immunoassay for ochratoxin A in cereal with high resistance to matrix interference. Talanta. 2017;164:154–8.  https://doi.org/10.1016/j.talanta.2016.11.039.CrossRefGoogle Scholar
  79. 79.
    Sun Z, Duan Z, Liu X. Development of a nanobody-based competitive dot ELISA for visual screening of ochratoxin A in cereals. Food Anal Methods. 2017;1–7. doi: https://doi.org/10.1007/s12161-017-0915-1.
  80. 80.
    Bever CS, Dong J-X, Vasylieva N, Barnych B, Cui Y, Xu Z-L, et al. VHH antibodies: emerging reagents for the analysis of environmental chemicals. Anal Bioanal Chem. 2016;408:5985–6002.  https://doi.org/10.1007/s00216-016-9585-x.CrossRefGoogle Scholar
  81. 81.
    de Marco A. Biotechnological applications of recombinant single-domain antibody fragments. Microb Cell Factories 2011;10:44. doi: https://doi.org/10.1186/1475-2859-10-44.
  82. 82.
    Jackson TM, Ekins RP. Theoretical limitations on immunoassay sensitivity: current practice and potential advantages of fluorescent Eu3+ chelates as non-radioisotopic tracers. J Immunol Methods. 1986;87:13–20.  https://doi.org/10.1016/0022-1759(86)90338-8.CrossRefGoogle Scholar
  83. 83.
    Ueda H, Tsumoto K, Kubota K, Suzuki E, Nagamune T, Nishimura H, et al. Open sandwich ELISA: a novel immunoassay based on the interchain interaction of antibody variable region. Nat Biotechnol. 1996;14:1714–8.  https://doi.org/10.1038/nbt1296-1714.CrossRefGoogle Scholar
  84. 84.
    Fan M, Jiang H. Recent progress in noncompetitive hapten immunoassays: a review. In: Abuelzein E, editor. Trends in immunolabelled and related techniques. Rijeka: In Tech; 2012.  https://doi.org/10.5772/36688.Google Scholar
  85. 85.
    Li P, Deng S. Mimetic peptide and special antibody: promising agents for optimizing hapten-analyzing systems. Anal Methods. 2016;8:2554–60.  https://doi.org/10.1039/c5ay02533h.CrossRefGoogle Scholar
  86. 86.
    Suzuki T, Munakata Y, Morita K, Shinoda T, Ueda H. Sensitive detection of estrogenic mycotoxin zearalenone by open sandwich immunoassay. Anal Sci. 2007;1:65–70.CrossRefGoogle Scholar
  87. 87.
    Ullman EF, Milburn G, Jelesko J, Radika K, Pirio M, Kempe T, et al. Anti-immune complex antibodies enhance affinity and specificity of primary antibodies. Proc Natl Acad Sci U S A. 1993;90:1184–9.CrossRefGoogle Scholar
  88. 88.
    Pulli T, Höyhtyä M, Söderlund H, Takkinen K. One-step homogeneous immunoassay for small analytes. Anal Chem. 2005;77:2637–42.  https://doi.org/10.1021/ac048379l.CrossRefGoogle Scholar
  89. 89.
    González-Techera A, Vanrell L, Last JA, Hammock BD, González-Sapienza G. Phage anti-immune complex assay: general strategy for noncompetitive immunodetection of small molecules. Anal Chem. 2007;79:7799–806.CrossRefGoogle Scholar
  90. 90.
    Kim H-J, McCoy M, Gee SJ, González-Sapienza GG, Hammock BD. Noncompetitive phage anti-immunocomplex real-time polymerase chain reaction for sensitive detection of small molecules. Anal Chem. 2011;83:246–53.CrossRefGoogle Scholar
  91. 91.
    Arola HO, Tullila A, Kiljunen H, Campbell K, Siitari H, Nevanen TK. Specific noncompetitive immunoassay for HT-2 mycotoxin detection. Anal Chem. 2016;88:2446–52.  https://doi.org/10.1021/acs.analchem.5b04591.CrossRefGoogle Scholar
  92. 92.
    Arola HO, Tullila A, Nathanail AV, Nevanen TK. A simple and specific noncompetitive ELISA method for HT-2 toxin detection. Toxins (Basel). 2017;9:–145.  https://doi.org/10.3390/toxins9040145.
  93. 93.
    Peltomaa R, Benito-Peña E, Barderas R, Sauer U, Gonzalez Andrade M, Moreno-Bondi MC. Microarray-based immunoassay with synthetic mimotopes for the detection of fumonisin B1. Anal Chem. 2017;89:6216–23.  https://doi.org/10.1021/acs.analchem.7b01178.CrossRefGoogle Scholar
  94. 94.
    Chauhan R, Singh J, Sachdev T, Basu T, Malhotra BD. Recent advances in mycotoxins detection. Biosens Bioelectron. 2016;81:532–45.  https://doi.org/10.1016/j.bios.2016.03.004.CrossRefGoogle Scholar
  95. 95.
    Qiu YL, He QH, Xu Y, Bhunia AK, Tu Z, Chen B, et al. Deoxynivalenol-mimic nanobody isolated from a naïve phage display nanobody library and its application in immunoassay. Anal Chim Acta. 2015;887:201–8.  https://doi.org/10.1016/j.aca.2015.06.033.CrossRefGoogle Scholar
  96. 96.
    Xiao H, Clarke JR, Marquardt RR, Frohlich AA. Improved methods for conjugating selected mycotoxins to carrier proteins and dextran for immunoassays. J Agric Food Chem. 1995;43:2092–7.  https://doi.org/10.1021/jf00056a025.CrossRefGoogle Scholar
  97. 97.
    Wang Y, Li P, Majkova Z, Bever CR, Kim HJ, Zhang Q, et al. Isolation of alpaca anti-idiotypic heavy-chain single-domain antibody for the aflatoxin immunoassay. Anal Chem. 2013;85:8298–303.  https://doi.org/10.1021/ac4015885.CrossRefGoogle Scholar
  98. 98.
    Lei J, Li P, Zhang Q, Wang Y, Zhang Z, Ding X, et al. Anti-idiotypic nanobody-phage based real-time immuno-PCR for detection of hepatocarcinogen aflatoxin in grains and feedstuffs. Anal Chem. 2014;86:10841–6.  https://doi.org/10.1021/ac5029424.CrossRefGoogle Scholar
  99. 99.
    Tu Z, Xu Y, He Q, Fu J, Liu X, Tao Y. Isolation and characterisation of deoxynivalenol affinity binders from a phage display library based on single-domain camelid heavy chain antibodies (VHHs). Food Agric Immunol. 2012;23:123–31.  https://doi.org/10.1080/09540105.2011.606560.CrossRefGoogle Scholar
  100. 100.
    Shu M, Xu Y, Wang D, Liu X, Li Y, He Q, et al. Anti-idiotypic nanobody: A strategy for development of sensitive and green immunoassay for fumonisin B1. Talanta. 2015;143:388–93.  https://doi.org/10.1016/j.talanta.2015.05.010.CrossRefGoogle Scholar
  101. 101.
    Shu M, Xu Y, Liu X, Li Y, He Q, Tu Z, et al. Anti-idiotypic nanobody-alkaline phosphatase fusion proteins: development of a one-step competitive enzyme immunoassay for fumonisin B1 detection in cereal. Anal Chim Acta. 2016;924:53–9.  https://doi.org/10.1016/j.aca.2016.03.053.CrossRefGoogle Scholar
  102. 102.
    Liu X, Xu Y, He QH, He ZY, Xiong ZP. Application of mimotope peptides of fumonisin B1 in peptide ELISA. J Agric Food Chem. 2013;61:4765–70.  https://doi.org/10.1021/jf400056p.CrossRefGoogle Scholar
  103. 103.
    Xu Y, Chen B, He QH, Qiu YL, Liu X, He ZY, et al. New approach for development of sensitive and environmentally friendly immunoassay for mycotoxin fumonisin B1 based on using peptide-MBP fusion protein as substitute for coating antigen. Anal Chem. 2014;86:8433–40.  https://doi.org/10.1021/ac502037w.CrossRefGoogle Scholar
  104. 104.
    Ji Y, He Q, Xu Y, Tu Z, Yang H, Qiu Y, et al. Phage displayed anti-idiotypic nanobody mediated immuno-PCR for sensitive and environmentally friendly detection of mycotoxin ochratoxin A. Anal Methods. 2016;8:7824–31.  https://doi.org/10.1039/c6ay01264g.CrossRefGoogle Scholar
  105. 105.
    He ZY, He QH, Xu Y, Li YP, Liu X, Chen B, et al. Ochratoxin A mimotope from second-generation peptide library and its application in immunoassay. Anal Chem. 2013;85:10304–11.  https://doi.org/10.1021/ac402127t.CrossRefGoogle Scholar
  106. 106.
    Zou X, Chen C, Huang X, Chen X, Wang L, Xiong Y. Phage-free peptide ELISA for ochratoxin A detection based on biotinylated mimotope as a competing antigen. Talanta. 2016;146:394–400.  https://doi.org/10.1016/j.talanta.2015.08.049.CrossRefGoogle Scholar
  107. 107.
    Uner A, Gavalchin J. Idiotypes. Chichester: Wiley; 2006.CrossRefGoogle Scholar
  108. 108.
    Hsu KH, Chu FS. Production and characterization of anti-idiotype and anti-anti-idiotype antibodies from a monoclonal antibody against aflatoxin. J Agric Food Chem. 1994;42:2353–9.  https://doi.org/10.1021/jf00046a052.CrossRefGoogle Scholar
  109. 109.
    Guan D, Li P, Cui Y, Zhang Q, Zhang W. A competitive immunoassay with a surrogate calibrator curve for aflatoxin M1 in milk. Anal Chim Acta. 2011;703:64–9.  https://doi.org/10.1016/j.aca.2011.07.011.CrossRefGoogle Scholar
  110. 110.
    Chu FS, Huang X, Maragos CM. Production and characterization of anti-idiotype and anti-anti-idiotype antibodies against fumonisin B1. J Agric Food Chem. 1995;43:261–7.  https://doi.org/10.1021/jf00049a046.CrossRefGoogle Scholar
  111. 111.
    Maragos CM. Production of anti-idiotype antibodies for deoxynivalenol and their evaluation with three immunoassay platforms. Mycotoxin Res. 2014;30:103–11.  https://doi.org/10.1007/s12550-014-0190-6.CrossRefGoogle Scholar
  112. 112.
    Yuan Q, Pestka JJ, Hespenheide BM, Kuhn LA, Linz JE, Hart LP. Identification of mimotope peptides which bind to the mycotoxin deoxynivalenol-specific monoclonal antibody. Appl Environ Microbiol. 1999;65:3279–86.Google Scholar
  113. 113.
    Chanh T, Rappocciolo G, Hewetson J. Monoclonal anti-idiotype induces protection against the cytotoxicity of the trichothecene mycotoxin T-2. J Immunol. 1990;144:4721–8.Google Scholar
  114. 114.
    Chanh T, Siwak E, Hewetson J. Anti-idiotype-based vaccines against biological toxins. Toxicol Appl Pharmacol. 1991;108:183–93.CrossRefGoogle Scholar
  115. 115.
    Wang D, Xu Y, Tu Z, Fu JH, Xiong YH, Feng F, et al. Isolation and characterization of recombinant variable domain of heavy chain anti-idiotypic antibodies specific to aflatoxin B1. Biomed Environ Sci. 2014;27:118–21.  https://doi.org/10.3967/bes2014.025.Google Scholar
  116. 116.
    Xu Y, Xiong L, Li Y, Xiong Y, Tu Z, Fu J, et al. Citrinin detection using phage-displayed anti-idiotypic single-domain antibody for antigen mimicry. Food Chem. 2015;177:97–101.  https://doi.org/10.1016/j.foodchem.2015.01.007.CrossRefGoogle Scholar
  117. 117.
    Xu Y, Xiong L, Li Y, Xiong Y, Tu Z, Fu J, et al. Anti-idiotypic nanobody as citrinin mimotope from a naive alpaca heavy chain single domain antibody library. Anal Bioanal Chem. 2015;407:5333–41.  https://doi.org/10.1007/s00216-015-8693-3.CrossRefGoogle Scholar
  118. 118.
    Liu R, Yu Z, He Q, Xu Y. An immunoassay for ochratoxin A without the mycotoxin. Food Control. 2007;18:872–7.  https://doi.org/10.1016/j.foodcont.2006.05.002.CrossRefGoogle Scholar
  119. 119.
    Lai W, Fung DYC, Yang X, Renrong L, Xiong Y. Development of a colloidal gold strip for rapid detection of ochratoxin A with mimotope peptide. Food Control. 2009;20:791–5.  https://doi.org/10.1016/j.foodcont.2008.10.007.CrossRefGoogle Scholar
  120. 120.
    Xu Y, He Z, He Q, Qiu Y, Chen B, Chen J, et al. Use of cloneable peptide-MBP fusion protein as a mimetic coating antigen in the standardized immunoassay for mycotoxin ochratoxin A. J Agric Food Chem. 2014;62:8830–6.  https://doi.org/10.1021/jf5028922.CrossRefGoogle Scholar
  121. 121.
    He Q-h, Xu Y, Zhang C-Z, Li Y-P, Huang Z-B. Phage-borne peptidomimetics as immunochemical reagent in dot-immunoassay for mycotoxin zearalenone. Food Control. 2014;39:56–61.  https://doi.org/10.1016/j.foodcont.2013.10.019.CrossRefGoogle Scholar
  122. 122.
    Nelson D, Cox ME. Lehninger principles of biochemistry. 4th ed. New York: Freeman; 2005.Google Scholar
  123. 123.
    Chen H, Huang J, Palaniappan A, Wang Y, Liedberg B, Platt M, et al. A review on electronic bio-sensing approaches based on non-antibody recognition elements. Analyst. 2016;141:2335–46.  https://doi.org/10.1039/c5an02623g.CrossRefGoogle Scholar
  124. 124.
    Liu Q, Wang J, Boyd BJ. Peptide-based biosensors. Talanta. 2015;136:114–27.  https://doi.org/10.1016/j.talanta.2014.12.020.CrossRefGoogle Scholar
  125. 125.
    Pavan S, Berti F. Short peptides as biosensor transducers. Anal Bioanal Chem. 2012;402:3055–70.  https://doi.org/10.1007/s00216-011-5589-8.CrossRefGoogle Scholar
  126. 126.
    Tothill IE. Peptides as molecular receptors. In: Zourob M, editor. Recognition receptors in biosensors. New York: Springer; 2010. p. 249–74.CrossRefGoogle Scholar
  127. 127.
    Bazin I, Andreotti N, Hassine AI, De Waard M, Sabatier JM, Gonzalez C. Peptide binding to ochratoxin A mycotoxin: a new approach in conception of biosensors. Biosens Bioelectron 2013;40:240–246. doi: https://doi.org/10.1016/j.bios.2012.07.031.
  128. 128.
    Soleri R, Demey H, Tria SA, Guiseppi-Elie A, Hassine AI, Gonzalez C, et al. Peptide conjugated chitosan foam as a novel approach for capture-purification and rapid detection of hapten-example of ochratoxin A. Biosens Bioelectron. 2015;67:634–41.  https://doi.org/10.1016/j.bios.2014.09.084.CrossRefGoogle Scholar
  129. 129.
    Tria SA, Lopez-Ferber D, Gonzalez C, Bazin I, Guiseppi-Elie A. Microfabricated biosensor for the simultaneous amperometric and luminescence detection and monitoring of ochratoxin A. Biosens Bioelectron. 2016;79:835–42.  https://doi.org/10.1016/j.bios.2016.01.018.CrossRefGoogle Scholar
  130. 130.
    Heurich M, Altintas Z, Tothill IE. Computational design of peptide ligands for ochratoxin A. Toxins. 2013;5:1202–18.  https://doi.org/10.3390/toxins5061202.CrossRefGoogle Scholar
  131. 131.
    Giraudi G, Ferrero VE, Anfossi L, Baggiani C, Giovannoli C, Tozzi C. Solid-phase extraction of ochratoxin A from wine based on a binding hexapeptide prepared by combinatorial synthesis. J Chromatogr A. 2007;1175:174–80.  https://doi.org/10.1016/j.chroma.2007.10.057.CrossRefGoogle Scholar
  132. 132.
    Tozzi C, Anfossi L, Baggiani C, Giovannoli C, Giraudi G. A combinatorial approach to obtain affinity media with binding properties towards the aflatoxins. Anal Bioanal Chem. 2003;375:994–9.  https://doi.org/10.1007/s00216-003-1754-z.CrossRefGoogle Scholar
  133. 133.
    Pfeiffer F, Mayer G. Selection and biosensor application of aptamers for small molecules. Front Chem. 2016;4:25.  https://doi.org/10.3389/fchem.2016.00025.CrossRefGoogle Scholar
  134. 134.
    Kong HY, Byun J. Nucleic acid aptamers: new methods for selection, stabilization, and application in biomedical science. Biomol Ther. 2013;21:423–34.  https://doi.org/10.4062/biomolther.2013.085.CrossRefGoogle Scholar
  135. 135.
    Kleinjung F, Klussmann S, Erdmann VA, Scheller FW, Fürste JP, Bier FF. High-affinity RNA as a recognition element in a biosensor. Anal Chem. 1998;70:328–31.  https://doi.org/10.1021/ac9706483.CrossRefGoogle Scholar
  136. 136.
    Ma X, Wang W, Chen X, Xia Y, Wu S, Duan N, et al. Selection, identification, and application of aflatoxin B1 aptamer. Eur Food Res Technol. 2014;238:919–25.  https://doi.org/10.1007/s00217-014-2176-1.CrossRefGoogle Scholar
  137. 137.
    Ma X, Wang W, Chen X, Xia Y, Duan N, Wu S, et al. Selection, characterization and application of aptamers targeted to aflatoxin B2. Food Control. 2015;47:545–51.  https://doi.org/10.1016/j.foodcont.2014.07.037.CrossRefGoogle Scholar
  138. 138.
    Nguyen BH, Tran LD, Do QP, Nguyen HL, Tran NH, Nguyen PX. Label-free detection of aflatoxin M1 with electrochemical Fe3O4/polyaniline-based aptasensor. Mater Sci Eng C Mater Biol Appl. 2013;33:2229–34.  https://doi.org/10.1016/j.msec.2013.01.044.CrossRefGoogle Scholar
  139. 139.
    Rouah-Martin E, Mehta J, van Dorst B, de Saeger S, Dubruel P, Maes BU, Lemiere F, Goormaghtigh E, Daems D, Herrebout W, van Hove F, Blust R, Robbens J. Aptamer-based molecular recognition of lysergamine, metergoline and small ergot alkaloids. Int J Mol Sci 2012;13:17138–17159. doi: https://doi.org/10.3390/ijms131217138.
  140. 140.
    McKeague M, Bradley CR, De Girolamo A, Visconti A, Miller JD, Derosa MC. Screening and initial binding assessment of fumonisin B1 aptamers. Int J Mol Sci 2010;11:4864–4881. doi: https://doi.org/10.3390/ijms11124864.
  141. 141.
    Wu S, Zhang L, Yang M Fumonisins B2 nucleic acid aptamer and application thereof. 2012. Patent CN 102517290 A.Google Scholar
  142. 142.
    Barthelmebs L, Jonca J, Hayat A, Prieto-Simon B, Marty J-L. Enzyme-linked aptamer assays (ELAAs), based on a competition format for a rapid and sensitive detection of Ochratoxin A in wine. Food Control. 2011;22:737–43.  https://doi.org/10.1016/j.foodcont.2010.11.005.CrossRefGoogle Scholar
  143. 143.
    Chen X, Huang Y, Duan N, Wu S, Xia Y, Ma X, et al. Screening and identification of DNA aptamers against T-2 toxin assisted by graphene oxide. J Agric Food Chem. 2014;62:10368–74.  https://doi.org/10.1021/jf5032058.CrossRefGoogle Scholar
  144. 144.
    Chen X, Huang Y, Duan N, Wu S, Ma X, Xia Y, et al. Selection and identification of ssDNA aptamers recognizing zearalenone. Anal Bioanal Chem. 2013;405:6573–81.  https://doi.org/10.1007/s00216-013-7085-9.CrossRefGoogle Scholar
  145. 145.
    Sabet FS, Hosseini M, Khabbaz H, Dadmehr M, Ganjali MR. FRET-based aptamer biosensor for selective and sensitive detection of aflatoxin B1 in peanut and rice. Food Chem. 2017;220:527–32.  https://doi.org/10.1016/j.foodchem.2016.10.004.CrossRefGoogle Scholar
  146. 146.
    Chen X, Bai X, Li H, Zhang B. Aptamer-based microcantilever array biosensor for detection of fumonisin B1. RSC Adv. 2015;5:35448–52.  https://doi.org/10.1039/c5ra04278j.CrossRefGoogle Scholar
  147. 147.
    Guo X, Wen F, Zheng N, Li S, Fauconnier M-L, Wang J. A qPCR aptasensor for sensitive detection of aflatoxin M1. Anal Bioanal Chem. 2016;408:5577–84.  https://doi.org/10.1007/s00216-016-9656-z.CrossRefGoogle Scholar
  148. 148.
    Samokhvalov AV, Safenkova IV, Eremin SA, Zherdev AV, Dzantiev BB. Use of anchor protein modules in fluorescence polarisation aptamer assay for ochratoxin A determination. Anal Chim Acta. 2017;962:80–7.  https://doi.org/10.1016/j.aca.2017.01.024.CrossRefGoogle Scholar
  149. 149.
    Li Q, Lu Z, Tan X, Xiao X, Wang P, Wu L, et al. Ultrasensitive detection of aflatoxin B1 by SERS aptasensor based on exonuclease-assisted recycling amplification. Biosens Bioelectron. 2017;97:59–64.  https://doi.org/10.1016/j.bios.2017.05.031.CrossRefGoogle Scholar
  150. 150.
    Abnous K, Danesh NM, Alibolandi M, Ramezani M, Sarreshtehdar Emrani A, Zolfaghari R, et al. A new amplified π-shape electrochemical aptasensor for ultrasensitive detection of aflatoxin B1. Biosens Bioelectron. 2017;94:374–9.  https://doi.org/10.1016/j.bios.2017.03.028.CrossRefGoogle Scholar
  151. 151.
    Wang S, Zhang Y, Pang G, Zhang Y, Guo S. Tuning the aggregation/disaggregation behavior of graphene quantum dots by structure-switching aptamer for high-sensitivity fluorescent ochratoxin A sensor. Anal Chem. 2017;89:1704–9.  https://doi.org/10.1021/acs.analchem.6b03913.CrossRefGoogle Scholar
  152. 152.
    Benito-Peña E, Valdés MG, Glahn-Martínez B, Moreno-Bondi MC. Fluorescence based fiber optic and planar waveguide biosensors. A review. Anal Chim Acta. 2016;943:17–40.  https://doi.org/10.1016/j.aca.2016.08.049.CrossRefGoogle Scholar
  153. 153.
    Cho EJ, Lee JW, Ellington AD. Applications of aptamers as sensors. Annu Rev Anal Chem. 2009;2:241–64.  https://doi.org/10.1146/annurev.anchem.1.031207.112851.CrossRefGoogle Scholar
  154. 154.
    Zhao Y, Chen F, Li Q, Wang L, Fan C. Isothermal amplification of nucleic acids. Chem Rev. 2015;115:12491–545.  https://doi.org/10.1021/acs.chemrev.5b00428.CrossRefGoogle Scholar
  155. 155.
    Huang H, Qin J, Hu K, Liu X, Zhao S, Huang Y. Novel autonomous protein-encoded aptamer nanomachines and isothermal exponential amplification for ultrasensitive fluorescence polarization sensing of small molecules. RSC Adv. 2016;6:86043–50.  https://doi.org/10.1039/c6ra17959b.CrossRefGoogle Scholar
  156. 156.
    Seok Y, Byun JY, Shim WB, Kim MG. A structure-switchable aptasensor for aflatoxin B1 detection based on assembly of an aptamer/split DNAzyme. Anal Chim Acta. 2015;886:182–7.  https://doi.org/10.1016/j.aca.2015.05.041.CrossRefGoogle Scholar
  157. 157.
    Ren C, Li H, Lu X, Qian J, Zhu M, Chen W, et al. A disposable aptasensing device for label-free detection of fumonisin B1 by integrating PDMS film-based micro-cell and screen-printed carbon electrode. Sensors Actuators B Chem. 2017;251:192–9.  https://doi.org/10.1016/j.snb.2017.05.035.CrossRefGoogle Scholar
  158. 158.
    Lv X, Zhang Y, Liu G, Du L, Wang S. Aptamer-based fluorescent detection of ochratoxin A by quenching of gold nanoparticles. RSC Adv. 2017;7:16290–4.  https://doi.org/10.1039/c7ra01474k.CrossRefGoogle Scholar
  159. 159.
    Sharma A, Hayat A, Mishra RK, Catanante G, Bhand S, Marty JL. Titanium dioxide nanoparticles (TiO2) quenching based aptasensing platform: application to ochratoxin A detection. Toxins. 2015;7:3771–84.  https://doi.org/10.3390/toxins7093771.CrossRefGoogle Scholar
  160. 160.
    Lv L, Li D, Cui C, Zhao Y, Guo Z. Nuclease-aided target recycling signal amplification strategy for ochratoxin A monitoring. Biosens Bioelectron. 2017;87:136–41.  https://doi.org/10.1016/j.bios.2016.08.024.CrossRefGoogle Scholar
  161. 161.
    Zhang J, Li Z, Zhao S, Lu Y. Size-dependent modulation of graphene oxide-aptamer interactions for an amplified fluorescence-based detection of aflatoxin B1 with a tunable dynamic range. Analyst. 2016;141:4029–34.  https://doi.org/10.1039/c6an00368k.CrossRefGoogle Scholar
  162. 162.
    Chen J, Wen J, Zhuang L, Zhou S. An enzyme-free catalytic DNA circuit for amplified detection of aflatoxin B1 using gold nanoparticles as colorimetric indicators. Nanoscale. 2016;8:9791–7.  https://doi.org/10.1039/c6nr01381c.CrossRefGoogle Scholar
  163. 163.
    Dai S, Wu S, Duan N, Chen J, Zheng Z, Wang Z. An ultrasensitive aptasensor for ochratoxin A using hexagonal core/shell upconversion nanoparticles as luminophores. Biosens Bioelectron. 2017;91:538–44.  https://doi.org/10.1016/j.bios.2017.01.009.CrossRefGoogle Scholar
  164. 164.
    Duan N, Wu S, Dai S, Gu H, Hao L, Ye H, et al. Advances in aptasensors for the detection of food contaminants. Analyst. 2016;141:3942–61.  https://doi.org/10.1039/c6an00952b.CrossRefGoogle Scholar
  165. 165.
    Machinek RR, Ouldridge TE, Haley NE, Bath J, Turberfield AJ. Programmable energy landscapes for kinetic control of DNA strand displacement. Nat Commun. 2014;5:5324.  https://doi.org/10.1038/ncomms6324.CrossRefGoogle Scholar
  166. 166.
    Huang L, Wu J, Zheng L, Qian H, Xue F, Wu Y, et al. Rolling chain amplification based signal-enhanced electrochemical aptasensor for ultrasensitive detection of ochratoxin A. Anal Chem. 2013;85:10842–9.  https://doi.org/10.1021/ac402228n.CrossRefGoogle Scholar
  167. 167.
    Bianco M, Sonato A, De Girolamo A, Pascale M, Romanato F, Rinaldi R, Arima V. An aptamer-based SPR-polarization platform for high sensitive OTA detection. Sensors Actuators B Chem 2017;241:314–320. doi: https://doi.org/10.1016/j.snb.2016.10.056.
  168. 168.
    Ruffato G, Pasqualotto E, Sonato A, Zacco G, Silvestri D, Morpurgo M, De Toni A, Romanato F. Implementation and testing of a compact and high-resolution sensing device based on grating-coupled surface plasmon resonance with polarization modulation. Sensors Actuators B Chem 2013;185:179–187. doi: https://doi.org/10.1016/j.snb.2013.04.113.
  169. 169.
    Moreno-Bondi M, Urraca J, Navarro F, Carrasco S. Preparation of molecularly imprinted polymers. In: Alvarez-Lorenzo C, Concheiro A, editors. Molecularly imprinted polymers: a handbook for academia and industry. Shawbury: Smithers Rapra; 2013. p. 23–86.Google Scholar
  170. 170.
    Li S, Ge Y, Piletsky SA, Lunec J. Molecularly imprinted sensors: Overview and applications. Amsterdam: Elsevier; 2012.Google Scholar
  171. 171.
    Haupt K. Molecular imprinting. Berlin: Springer; 2012.Google Scholar
  172. 172.
    Mirsky V, Yatsimirsky A. Artificial receptors for chemical sensors. Weinheim: Wiley-VCH; 2011.Google Scholar
  173. 173.
    Pieltsky SA, Whitcombe MJ. Designing receptors for the next generation of biosensors. Berlin: Springer; 2013.Google Scholar
  174. 174.
    Lee SW, Kunitake T. Handbook of molecular imprinting. Advanced sensor applications. Singapore: Pan Stanford Publishing; 2013.Google Scholar
  175. 175.
    Wang S, Zhu X, Zhao M. Optical sensors based on molecularly imprinted nanomaterials. In: Li S, Le Y, Li H, editors. Smart nanomaterials for sensor application. Oak Park: Bentham; 2012. p. 60–75.CrossRefGoogle Scholar
  176. 176.
    Alvarez-Lorenzo C,  Concheiro A. Molecularly imprinted polymers: a handbook for academia and industry. Shawbury: Smithers Rapra; 2013.Google Scholar
  177. 177.
    Chen L, Wang X, Lu W, Wu X, Li J. Molecular imprinting: perspectives and applications. Chem Soc Rev. 2016;45:2137–211.CrossRefGoogle Scholar
  178. 178.
    Haupt K. Biomaterials: plastic antibodies. Nat Mater. 2010;9:612–4.  https://doi.org/10.1038/nmat2818.CrossRefGoogle Scholar
  179. 179.
    Moreno-Bondi MC, Navarro-Villoslada F, Benito-Peña E, Urraca JL. Molecularly imprinted polymers as selective recognition elements in optical sensing. Curr Anal Chem. 2008;4:316–40.  https://doi.org/10.2174/157341108785914925.CrossRefGoogle Scholar
  180. 180.
    Moreno-Bondi MC, Benito-Peña M, Urraca JL, Orellana G. Immuno-like assays and biomimetic microchips. Top Curr Chem. 2012;325:114–64.  https://doi.org/10.1007/128_2010_94.Google Scholar
  181. 181.
    Jiang M, Braiek M, Florea A, Chrouda A, Farre C, Bonhomme A, et al. Aflatoxin B1 detection using a highly-sensitive molecularly-imprinted electrochemical sensor based on an electropolymerized metal organic framework. Toxins. 2015;7:3540–53.  https://doi.org/10.3390/toxins7093540.CrossRefGoogle Scholar
  182. 182.
    Wang Z, Li J, Xu L, Feng Y, Xiaoquan L. Electrochemical sensor for determination of aflatoxin B1 based on multiwalled carbon nanotubes-supported Au/Pt bimetallic nanoparticles. J Solid State Electrochem. 2014;18:2487–96.  https://doi.org/10.1007/s10008-014-2506-z.CrossRefGoogle Scholar
  183. 183.
    Fang G, Liu G, Yang Y, Wang S. Quartz crystal microbalance sensor based on molecularly imprinted polymer membrane and three-dimensional Au nanoparticles@mesoporous carbon CMK-3 functional composite for ultrasensitive and specific determination of citrinin. Sensors Actuators B Chem. 2015;230:272–80.  https://doi.org/10.1016/j.snb.2016.02.053.CrossRefGoogle Scholar
  184. 184.
    Choi SW, Chang HJ, Lee N, Chun HS. A surface plasmon resonance sensor for the detection of deoxynivalenol using a molecularly imprinted polymer. Sensors. 2011;11:8654–64.  https://doi.org/10.3390/s110908654.CrossRefGoogle Scholar
  185. 185.
    Zhang W, Xiong H, Chen M, Zhang X, Wang S. Surface-enhanced molecularly imprinted electrochemiluminescence sensor based on Ru@SiO2 for ultrasensitive detection of fumonisin B1. Biosens Bioelectron. 2017;96:55–61.  https://doi.org/10.1016/j.bios.2017.04.035.CrossRefGoogle Scholar
  186. 186.
    Wang Q, Chen M, Zhang H, Wen W, Zhang X, Wang S. Solid-state electrochemiluminescence sensor based on RuSi nanoparticles combined with molecularly imprinted polymer for the determination of ochratoxin A. Sensors Actuators B Chem. 2016;22:264–9.  https://doi.org/10.1016/j.snb.2015.08.057.CrossRefGoogle Scholar
  187. 187.
    Pacheco JG, Castro M, Machado S, Barroso MF, Nouws HPA, Delerue-Matos C. Molecularly imprinted electrochemical sensor for ochratoxin A detection in food samples. Sensors Actuators B Chem. 2015;215:107–12.CrossRefGoogle Scholar
  188. 188.
    Zhang W, Han Y, Chen X, Luo X, Wang J, Yue T, et al. Surface molecularly imprinted polymer capped Mn-doped ZnS quantum dots as a phosphorescent nanosensor for detecting patulin in apple juice. Food Chem. 2017;232:145–54.  https://doi.org/10.1016/j.foodchem.2017.03.156.CrossRefGoogle Scholar
  189. 189.
    Xu L, Fang G, Pan M, Wang X, Wang S. One-pot synthesis of carbon dots-embedded molecularly imprinted polymer for specific recognition of sterigmatocystin in grains. Biosens Bioelectron. 2016;77:950–6.  https://doi.org/10.1016/j.bios.2015.10.072.CrossRefGoogle Scholar
  190. 190.
    Fang G, Fan C, Liu H, Pan M, Zhu H, Wang S. A novel molecularly imprinted polymer on CdSe/ZnS quantum dots for highly selective optosensing of mycotoxin zearalenone in cereal samples. RSC Adv. 2014;4:2764–71.  https://doi.org/10.1039/C3RA45172K.CrossRefGoogle Scholar
  191. 191.
    Urraca JL, Marazuela MD, Merino ER, Orellana G, Moreno-Bondi MC. Molecularly imprinted polymers with a streamline mimic of zeralenone analysis. J Chromatogr A. 2006;1116:127–34.  https://doi.org/10.1016/j.chroma.2006.03.032.CrossRefGoogle Scholar
  192. 192.
    Ton XA, Acha V, Bonomi P, Tse Sum Bui B, Haupt K. A disposable evanescent wave fiber optic sensor coated with a molecularly imprinted polymer as a selective fluorescence probe. Biosens Bioelectron. 2015;64:359–66.  https://doi.org/10.1016/j.bios.2014.09.017.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Riikka Peltomaa
    • 1
  • Elena Benito-Peña
    • 1
  • María C. Moreno-Bondi
    • 1
    Email author
  1. 1.Department of Analytical Chemistry, Faculty of ChemistryUniversidad Complutense de MadridMadridSpain

Personalised recommendations