Analytical and Bioanalytical Chemistry

, Volume 409, Issue 27, pp 6509–6519 | Cite as

An ultrasensitive and selective electrochemical sensor for determination of estrone 3-sulfate sodium salt based on molecularly imprinted polymer modified carbon paste electrode

  • Han Song
  • Yuli Wang
  • Lu Zhang
  • Liping Tian
  • Jun Luo
  • Na Zhao
  • Yajie Han
  • Feilang Zhao
  • Xue YingEmail author
  • Yingchun LiEmail author
Research Paper


A highly sensitive and selective electrochemical sensor based on carbon paste electrode (CPE) modified with molecularly imprinted polymers (MIPs) has been developed for the determination of estrone 3-sulfate sodium salt (ESS). MIPs were prepared in polar medium via bulk polymerization and characterized by scanning electron microscopy and infrared spectroscopy. Cyclic voltammetry was performed to the study preparation process and binding behavior of the MIP-modified CPE (MIP/CPE) toward ESS. The conditions for preparing MIPs and MIP/CPE as well as ESS detection were optimized. Under the optimal experimental conditions, the detection linear range for ESS is 4 × 10−12 to 6 × 10−9 M with a limit of detection of 1.18 × 10−12 M (S/N = 3). In addition, the sensor exhibits high binding affinity toward ESS over its structural analogues with excellent repeatability and stability. The fabricated MIP/CPE was then successfully employed to detect ESS in pregnant mare urine (PMU) without any pretreatment, and the average recoveries were from 99.6 to 104.9% with relative standard deviation less than 3.0%. High-performance liquid chromatography was adopted as a reference to validate the established approach in detecting ESS and their results showed good agreement. The as-prepared sensor has high potential to be a decent tool for on-site determination of ESS in PMU in a fast and convenient manner.

Graphical Abstract


Electrochemical sensor Molecularly imprinted polymers Carbon paste electrode Estrone 3-sulfate sodium salt Pregnant mare urine 



The project was financially supported by the National Natural Science Foundation of China (81460543, 81160540) and Open Funding Project of the State Key Laboratory of Bioreactor Engineering.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

216_2017_598_MOESM1_ESM.pdf (393 kb)
ESM 1 (PDF 392 kb)


  1. 1.
    Geisler J, Ekse D, Helle H, Duong NK, Lønning PE. An optimised, highly sensitive radioimmunoassay for the simultaneous measurement of estrone, estradiol and estrone sulfate in the ultra-low range in human plasma samples. J Steroid Biochem. 2008;109(1/2):90–5.CrossRefGoogle Scholar
  2. 2.
    Yuan L, Zhang J, Zhou P, Chen J, Wang R, Wen T, et al. Electrochemical sensor based on molecularly imprinted membranes at platinum nanoparticles-modified electrode for determination of 17β-estradiol. Biosens Bioelectron. 2011;29(1):29–33.CrossRefGoogle Scholar
  3. 3.
    Ke H, Liu M, Zhuang L, Li Z, Fan L, Zhao G. A fetomolar level 17β-estradiol electrochemical aptasensor constructed on hierarchical dendritic gold modified boron-doped diamond electrode. Electrochim Acta. 2014;137:146–53.CrossRefGoogle Scholar
  4. 4.
    Soliman HR, Dire D, Boudou P, Julien R, Launay JM, Brerault JL, et al. Characterization of estrone sulfatase activity in human thrombocytes. J Steroid Biochem. 1993;46(2):215–26.CrossRefGoogle Scholar
  5. 5.
    Purdy RH, Engel LL, Oncley JL. The characterization of estrone sulfate from human plasma. J Biol Chem. 1961;236:1043–50.Google Scholar
  6. 6.
    Anonymous. Wyeth layoff puts 19 pregnant mare urine ranches out of business. J Equine Vet Sci. 2005;25:251–2.Google Scholar
  7. 7.
    Miyagawa M, Maeda K, Aoyama A, Sugiyama Y. The eighth and ninth transmembrane domains in organic anion transporting polypeptide 1B1 affect the transport kinetics of estrone-3-sulfate and estradiol-17β-D-glucuronide. J Pharmacol Exp Ther. 2009;329(2):551–7.CrossRefGoogle Scholar
  8. 8.
    Tsoulis CJ, Hobkirk R. Factors affecting the 16 alpha-hydroxylation of estrone 3-sulfate by guinea pig liver microsomes. Can J Biochem. 1981;59(6):454–60.CrossRefGoogle Scholar
  9. 9.
    Levitz M, Raju U, Arcuri F, Brind JL, Vogelman JH, Orentreich N, et al. Relationship between the concentrations of estriol sulfate and estrone sulfate in human breast cyst fluid. J Clin Endocrinol Metab. 1992;75(3):726–9.Google Scholar
  10. 10.
    Li L, Nouraldeen A, Wilson AGE. Evaluation of transporter-mediated hepatic uptake in a non-radioactive high-throughput assay: a study of kinetics, species difference and plasma protein effect. Xenobiotica. 2013;43(3):253–62.CrossRefGoogle Scholar
  11. 11.
    De Bruyn T, Ye ZW, Peeters A, Sahi J, Baes M, Augustijns PF, et al. Determination of OATP-, NTCP- and OCT-mediated substrate uptake activities in individual and pooled batches of cryopreserved human hepatocytes. Eur J Pharm Sci. 2011;43(4):297–307.CrossRefGoogle Scholar
  12. 12.
    Morisaki T, Matsuzaki T, Yokoo K, Kusumoto M, Iwata K, Hamada A, et al. Regulation of renal organic ion transporters in cisplatin-induced acute kidney injury and uremia in rats. Pharm Res. 2008;25(11):2526–33.CrossRefGoogle Scholar
  13. 13.
    Yao J, Zhao Q, Gao XL. LC-MS assay three major conjugated estrogen of Xinjiang pregnant mare urine. West China J Pharm Sci. 2014;29:186–8.Google Scholar
  14. 14.
    Ohtsuki S, Takizawa T, Takanaga H, Terasaki N, Kitazawa T, Sasaki M, et al. In vitro study of the functional expression of organic anion transporting polypeptide at rat choroid plexus epithelial cells and its involvement in the cerebrospinal fluid-to-blood transport of estrone-3-sulfate. Mol Pharmacol. 2003;63(3):532–7.CrossRefGoogle Scholar
  15. 15.
    Blanco Lopez MC, Lobo Castanon MJ, Miranda Ordieres AJ, Tunon Blanco P. Voltammetric response of diclofenac-molecularly imprinted film modified carbon electrodes. Anal Bioanal Chem. 2003;377(2):257–61.CrossRefGoogle Scholar
  16. 16.
    Chai XL, Zhou XG, Zhu AW, Zhang LM, Qin Y, Shi GY, et al. A two-channel ratiometric electrochemical biosensor for in vivo monitoring of copper ions in a rat brain using specific biomolecular recognition and gold truncated octahedral microcages. Angew Chem Int Ed. 2013;52:8129–33.CrossRefGoogle Scholar
  17. 17.
    Madrakian T, Soleimani M, Afkhami A. Electrochemical determination of fluvoxamine on mercury nanoparticle multi-walled carbon nanotube modified glassy carbon electrode. Sensors Actuators B Chem. 2015;210:259–66.CrossRefGoogle Scholar
  18. 18.
    Lian WJ, Liu S, Yu JH, Li J, Cui M, Xu W, et al. Electrochemical sensor using neomycin-imprinted film as recognition element based on chitosan-silver nanoparticles/graphene-multiwalled carbon nanotubes composites modified electrode. Biosens Bioelectron. 2013;44:70–6.CrossRefGoogle Scholar
  19. 19.
    Zhang XB, Wang ZD, Xing H, Xiang Y, Lu Y. Catalytic and molecular beacons for amplified detection of metal ions and organic molecules with high sensitivity. Anal Chem. 2010;82:5005–11.CrossRefGoogle Scholar
  20. 20.
    Kong LJ, Pan MF, Fang GZ, Qian K, Wang S. An electrochemical sensor for rapid determination of ractopamine based on a molecularly imprinted electrosynthesized o-aminothiophenol film. Anal Bioanal Chem. 2012;404(6/7):1653–60.CrossRefGoogle Scholar
  21. 21.
    Li Y, Liu Y, Liu J, et al. Molecularly imprinted polymer decorated nanoporous gold for highly selective and sensitive electrochemical sensors. Sci Rep. 2015;5:7699–706.CrossRefGoogle Scholar
  22. 22.
    Li YC, Song H, Zhang L, Zuo P, Ye BC, Yao J, et al. Supportless electrochemical sensor based on molecularly imprinted polymer modified nanoporous microrod for determination of dopamine at trace level. Biosens Bioelectron. 2016;78:308–14.CrossRefGoogle Scholar
  23. 23.
    Liu Y, Liu J, Tang H, et al. Fabrication of highly sensitive and selective electrochemical sensor by using optimized molecularly imprinted polymers on multi-walled carbon nanotubes for metronidazole measurement. Sensors Actuators B Chem. 2015;206:647–52.CrossRefGoogle Scholar
  24. 24.
    Ramanavicius A, Ramanaviciene A, Malinauskas A. Electrochemical sensors based on conducting polymer—polypyrrole. Electrochim Acta. 2006;51(27):6025–37.CrossRefGoogle Scholar
  25. 25.
    Yu HC, Huang XY, Lei FH, Tan XC, Wei YC, Li H. Molecularly imprinted electrochemical sensor based on nickel nanoparticle modified electrodes for phenobarbital determination. Electrochim Acta. 2014;141:45–50.CrossRefGoogle Scholar
  26. 26.
    Ge Y, Anthony PF. Molecularly imprinted sorbent assays: recent developments and applications. Chem Eur J. 2009;15:8100–7.CrossRefGoogle Scholar
  27. 27.
    Liu J, Song H, Liu J, Liu Y, Li L, Tang H, et al. Preparation of molecularly imprinted polymer with double templates for rapid simultaneous determination of melamine and dicyandiamide in dairy products. Talanta. 2015;134:761–7.CrossRefGoogle Scholar
  28. 28.
    Afkhami A, Soltani-Felehgari F, Madrakian T, Ghaedi H. Surface decoration of multi-walled carbon nanotubes modified carbon paste electrode with gold nanoparticles for electro-oxidation and sensitive determination of nitrite. Biosens Bioelectron. 2014;51:379–85.CrossRefGoogle Scholar
  29. 29.
    Hocevar SB, Svancara I, Vytras K, Ogorevc B. Novel electrode for electrochemical stripping analysis based on carbon paste modified with bismuth powder. Electrochim Acta. 2005;51(4):706–10.CrossRefGoogle Scholar
  30. 30.
    Raoof JB, Ojani R, Rashid-Nadimi S. Preparation of polypyrrole/ferrocyanide films modified carbon paste electrode and its application on the electrocatalytic determination of ascorbic acid. Electrochim Acta. 2004;49(2):271–80.CrossRefGoogle Scholar
  31. 31.
    Aswini KK, Vinu Mohan AM, Biju VM. Molecularly imprinted polymer based electrochemical detection of L-cysteine at carbon paste electrode. Mater Sci Eng C Mater Biol Appl. 2014;37:321–6.CrossRefGoogle Scholar
  32. 32.
    Beitollahi H, Hamzavi M, Torkzadeh-Mahani M, Shanesaz M, Maleh HK. A novel strategy for simultaneous determination of dopamine and uric acid using a carbon paste electrode modified with CdTe quantum dots. Electroanalysis. 2015;27(2):524–33.CrossRefGoogle Scholar
  33. 33.
    El Bouabi Y, Farahi A, Labjar N, El Hajjaji S, Bakasse M, El Mhammedi MA. Square wave voltammetric determination of paracetamol at chitosan modified carbon paste electrode: application in natural water samples, commercial tablets and human urines. Mater Sci Eng C Mater Biol Appl. 2016;58:70–7.CrossRefGoogle Scholar
  34. 34.
    Fouladgar M, Karimi-Maleh H, Gupta VK. Highly sensitive voltammetric sensor based on NiO nanoparticle room temperature ionic liquid modified carbon paste electrode for levodopa analysis. J Mol Liq. 2015;208:78–83.CrossRefGoogle Scholar
  35. 35.
    Strikovsky AG, Kasper D, Grun M, Green BS, Hradil J, Wulff G. Catalytic molecularly imprinted polymers using conventional bulk polymerization or suspension polymerization: selective hydrolysis of diphenyl carbonate and diphenyl carbamate. J Am Chem Soc. 2000;122(26):6295–6.CrossRefGoogle Scholar
  36. 36.
    Sun Z, Schuessler W, Sengl M, Niessner R, Knopp D. Selective trace analysis of diclofenac in surface and wastewater samples using solid-phase extraction with a new molecularly imprinted polymer. Anal Chim Acta. 2008;620(1/2):73–81.CrossRefGoogle Scholar
  37. 37.
    Wei ST, Molinelli A, Mizaikoff B. Molecularly imprinted micro and nanospheres for the selective recognition of 17 beta-estradiol. Biosens Bioelectron. 2006;21(10):1943–51.CrossRefGoogle Scholar
  38. 38.
    Liu Y, Liu J, Tang H, Liu J, Xiu BB, Yu F, et al. Fabrication of highly sensitive and selective electrochemical sensor by using optimized molecularly imprinted polymers on multi-walled carbon nanotubes for metronidazole measurement. Sensors Actuators B Chem. 2015;206:647–52.CrossRefGoogle Scholar
  39. 39.
    Li YC, Liu Y, Liu J, Liu J, Tang H, Cao C, et al. Molecularly imprinted polymer decorated nanoporous gold for highly selective and sensitive electrochemical sensors. Sci Rep. 2015;5:7699–706.CrossRefGoogle Scholar
  40. 40.
    Song H, Zhang L, Yu F, Ye BC, Li YC. Molecularly imprinted polymer functionalized nanoporous Au-Ag alloy microrod: novel supportless electrochemical platform for ultrasensitive and selective sensing of metronidazole. Electrochim Acta. 2016;208:10–6.CrossRefGoogle Scholar
  41. 41.
    Vasapollo G, Sole RD, Mergola L, Lazzoi MR, Scardino A, Scorrano S, et al. Molecularly imprinted polymers: present and future prospective. Int J Mol Sci. 2011;12(9):5908–45.CrossRefGoogle Scholar
  42. 42.
    Lin LQ, Li YC, Fu Q, He LC, Zhang J, Zhang QQ. Preparation of molecularly imprinted polymer for sinomenine and study on its molecular recognition mechanism. Polymer. 2006;47(11):3792–8.CrossRefGoogle Scholar
  43. 43.
    Ge S, Yan M, Lu J, Zhang M, Yu F, Yu J, et al. Electrochemical biosensor based on graphene oxide-Au nanoclusters composites for L-cysteine analysis. Biosens Bioelectron. 2012;31(1):49–54.CrossRefGoogle Scholar
  44. 44.
    Li J, Zhao J, Wei XA. Sensitive and selective sensor for dopamine determination based on a molecularly imprinted electropolymer of o-aminophenol. Sensors Actuators B Chem. 2009;140(2):663–9.CrossRefGoogle Scholar
  45. 45.
    Liu J, Zhang L, Li L, Song H, Liu Y, Tang H, et al. Synthesis of metronidazole-imprinted molecularly imprinted polymers by distillation precipitation polymerization and their use as a solid-phase adsorbent and chromatographic filler. J Sep Sci. 2015;38(7):1172–8.CrossRefGoogle Scholar
  46. 46.
    Azevedo S, Lakshmi D, Chianella I, Whitcombe MJ, Karim K, Ivanova-Mitseva PK, et al. Molecularly imprinted polymer hybrid electrochemical sensor for the detection of β-estradiol. Ind Eng Chem Res. 2013;52:13917–23.CrossRefGoogle Scholar
  47. 47.
    Lin X, Li Y. A sensitive determination of estrogens with a Pt nano-clusters/multi-walled carbon nanotubes modified glassy carbon electrode. Biosens Bioelectron. 2006;22:253–9.CrossRefGoogle Scholar
  48. 48.
    Wang Z, Wang P, Tu X, Wu Y, Zhan G, Li C. A novel electrochemical sensor for estradiol based on nanoporous polymeric film bearing poly{1-butyl-3-[3-(N-pyrrole)propyl]imidazole dodecyl sulfonate} moiety. Sensors Actuators B Chem. 2014;193:190–7.CrossRefGoogle Scholar
  49. 49.
    Yuan LH, Zhang J, Zhou P, Chen JX, Wang RY, Wen TT, et al. Electrochemical sensor based on molecularly imprinted membranes at platinum nanoparticles modified electrode for determination of 17β-estradiol. Biosens Bioelectron. 2011;29:29–33.CrossRefGoogle Scholar
  50. 50.
    Ojeda I, Lopez-Montero J, Moreno-Guzman M, Janegitz BC, Gonzalez-Cortes A, Yanez-Sedeno P, et al. Electrochemical immunosensor for rapid and sensitive determination of estradiol. Anal Chim Acta. 2012;743:117–24.CrossRefGoogle Scholar
  51. 51.
    Futra D, Heng LY, Jaapar MZ, Ulianas A, Saeedfar K, Tan LL. A novel electrochemical sensor for 17β-estradiol from molecularly imprinted polymeric microspheres and multi-walled carbon nanotubes grafted with gold nanoparticles. Anal Methods. 2016;8(6):1381–9.CrossRefGoogle Scholar
  52. 52.
    Lahcen AA, Baleg AA, Baker P, Iwuoha E, Amine A. Synthesis and electrochemical characterization of nanostructured magnetic molecularly imprinted polymers for 17β-estradiol determination. Sensors Actuators B Chem. 2016;241:698–705.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Han Song
    • 1
    • 2
  • Yuli Wang
    • 3
  • Lu Zhang
    • 2
  • Liping Tian
    • 2
  • Jun Luo
    • 4
  • Na Zhao
    • 2
  • Yajie Han
    • 5
  • Feilang Zhao
    • 6
  • Xue Ying
    • 2
    Email author
  • Yingchun Li
    • 1
    • 2
    Email author
  1. 1.School of ScienceHarbin Institute of TechnologyShenzhenChina
  2. 2.Key Laboratory of Xinjiang Phytomedicine Resources of Ministry of Education, School of PharmacyShihezi UniversityShiheziChina
  3. 3.The First Affiliated Hospital of the Medical College of Shihezi UniversityShiheziChina
  4. 4.Xinjiang Xinziyuan Biological Pharmaceutical Co.YiningChina
  5. 5.Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical EngineeringShihezi UniversityShiheziChina
  6. 6.Jiangsu Devote Instrumental Science & Technology Co., Ltd.Huai’anChina

Personalised recommendations