Direct analysis of terpenes from biological buffer systems using SESI and IR-MALDESI

  • Milad Nazari
  • Alexandra A. Malico
  • Måns Ekelöf
  • Sean Lund
  • Gavin J. Williams
  • David C. Muddiman
Research Paper
Part of the following topical collections:
  1. ABCs 16th Anniversary

Abstract

Terpenes are the largest class of natural products with a wide range of applications including use as pharmaceuticals, fragrances, flavorings, and agricultural products. Terpenes are biosynthesized by the condensation of a variable number of isoprene units resulting in linear polyisoprene diphosphate units, which can then be cyclized by terpene synthases into a range of complex structures. While these cyclic structures have immense diversity and potential in different applications, their direct analysis in biological buffer systems requires intensive sample preparation steps such as salt cleanup, extraction with organic solvents, and chromatographic separations. Electrospray post-ionization can be used to circumvent many sample cleanup and desalting steps. SESI and IR-MALDESI are two examples of ionization methods that employ electrospray post-ionization at atmospheric pressure and temperature. By coupling the two techniques and doping the electrospray solvent with silver ions, olefinic terpenes of different classes and varying degrees of volatility were directly analyzed from a biological buffer system with no sample workup steps.

Keywords

Terpenes IR-MALDESI SESI Direct analysis Biological buffers Q Exactive Plus 

Supplementary material

216_2017_570_MOESM1_ESM.pdf (737 kb)
ESM 1(PDF 736 kb)

References

  1. 1.
    Gershenzon J, Dudareva N. The function of terpene natural products in the natural world. Nat Chem Biol. 2007;3:408–14. doi:10.1038/nchembio.2007.5.CrossRefGoogle Scholar
  2. 2.
    Vardakou M, Salmon M, Faraldos JA, Maille PEO. Comparative analysis and validation of the malachite green assay for the high throughput biochemical characterization of terpene synthases. MethodsX. 2014;1:187–96. doi:10.1016/j.mex.2014.08.007.CrossRefGoogle Scholar
  3. 3.
    Steele CL, Crock J, Croteau R. Sesquiterpene synthases from grand fir (Abies grandis). J Biol Chem. 1998;273:2078–89.CrossRefGoogle Scholar
  4. 4.
    Oprean R, Oprean L, Tamas M, et al. Essential oils analysis. II. Mass spectra identification of terpene and phenylpropane derivatives. J Pharm Biomed Anal. 2001;24:1163–8.CrossRefGoogle Scholar
  5. 5.
    Wilkes H. Methods of hydrocarbon analysis. In: Timmis KN, editor. Handb. Hydrocarb. Lipid Microbiol., 1st ed. Berlin: Springer Berlin Heidelberg; 2010. p. 50–62.Google Scholar
  6. 6.
    Whitehouse CM, Levin F, Meng CK, Fenn JB. Proceedings of the 34th ASMS Conference on Mass Spectrometry and Allied Topics. Cincinnati, OH; 1986. p. 507.Google Scholar
  7. 7.
    Wu C, Siems WF, Asbury GR, Hill HH. Electrospray ionization high-resolution ion mobility spectrometry-mass spectrometry. Anal Chem. 1998;70:4929–38.CrossRefGoogle Scholar
  8. 8.
    Fernandez de la Mora J. Ionization of vapor molecules by an electrospray cloud. Int J Mass Spectrom. 2011;300:182–93. doi:10.1016/j.ijms.2010.09.009.CrossRefGoogle Scholar
  9. 9.
    Berchtold C. Chapter 10 Secondary Electrospray Ionization. Ambient Ionization Mass Spectrometry. In: Domin M, Cody R editors. 1st ed. Cambridge: The Royal Society of Chemistry; 2015. pp. 252–266.Google Scholar
  10. 10.
    Sampson JS, Hawkridge AM, Muddiman DC. Generation and detection of multiply-charged peptides and proteins by matrix-assisted laser desorption electrospray ionization (MALDESI) Fourier transform ion cyclotron resonance mass spectrometry. J Am Soc Mass Spectrom. 2006;17:1712–6. doi:10.1016/j.jasms.2006.08.003.CrossRefGoogle Scholar
  11. 11.
    Robichaud G, Barry JA, Garrard KP, Muddiman DC. Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) imaging source coupled to a FT-ICR mass spectrometer. J Am Soc Mass Spectrom. 2013;24:92–100. doi:10.1007/s13361-012-0505-9.CrossRefGoogle Scholar
  12. 12.
    Bokhart MT, Muddiman DC. Infrared matrix-assisted laser desorption electrospray ionization mass spectrometry imaging analysis of biospecimens. Analyst. 2016;141:5236–45. doi:10.1039/c6an01189f.CrossRefGoogle Scholar
  13. 13.
    Meier F, Garrard KP, Muddiman DC. Silver dopants for targeted and untargeted direct analysis of unsaturated lipids via infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI). Rapid Commun Mass Spectrom. 2014;28:2461–70. doi:10.1002/rcm.7041.CrossRefGoogle Scholar
  14. 14.
    Ekelöf M, Mcmurtrie EK, Nazari M, et al. Direct analysis of triterpenes from high-salt fermented cucumbers using infrared matrix-assisted laser desorption. J Am Soc Mass Spectrom. 2017;28:370–5. doi:10.1007/s13361-016-1541-7.CrossRefGoogle Scholar
  15. 15.
    Robichaud G, Barry JA, Muddiman DC. IR-MALDESI mass spectrometry imaging of biological tissue sections using ice as a matrix. J Am Soc Mass Spectrom. 2014;25:319–28. doi:10.1007/s13361-013-0787-6.CrossRefGoogle Scholar
  16. 16.
    Lobodin VV, Juyal P, Mckenna AM, et al. Lithium cationization for petroleum analysis by positive ion electrospray ionization fourier transform ion cyclotron resonance mass spectrometry. Energy Fuel. 2014;28:6841–6847.Google Scholar
  17. 17.
    Urbansky ET, Magnuson ML, Freeman D, Jelks C. Quantitation of perchlorate ion by electrospray ionization mass spectrometry (ESI-MS) using stable association complexes with organic cations and bases to enhance selectivity. J Anal At Spectrom. 1999;14:1861–6.CrossRefGoogle Scholar
  18. 18.
    Ng KM, Ma NL, Tsang CW. Cation–aromatic pi interaction in the gas phase: an experimental study on relative silver (I) ion affinities of polyaromatic hydrocarbons. Rapid Commun Mass Spectrom. 1998;12:1679–84.CrossRefGoogle Scholar
  19. 19.
    Jackson AU, Shum T, Sokol E, et al. Enhanced detection of olefins using ambient ionization mass spectrometry: Ag + adducts of biologically relevant alkenes. Anal Bioanal Chem. 2011;399:367–76. doi:10.1007/s00216-010-4349-5.CrossRefGoogle Scholar
  20. 20.
    Berglund M, Wieser ME. Isotopic compositions of the elements 2009 (IUPAC technical report). Pure Appl Chem. 2011;83:397–410. doi:10.1351/PAC-REP-10-06-02.CrossRefGoogle Scholar
  21. 21.
    Rodriguez S, Kirby J, Denby CM, Keasling JD. Production and quantification of sesquiterpenes in Saccharomyces cerevisiae, including extraction, detection and quantification of terpene products and key related metabolites. Nat Protoc. 2014;9:1980–96. doi:10.1038/nprot.2014.132.CrossRefGoogle Scholar
  22. 22.
    Yoshikuni Y, Ferrin TE, Keasling JD. Designed divergent evolution of enzyme function. Nature. 2006;440:1078–82. doi:10.1038/nature04607.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Milad Nazari
    • 1
    • 2
  • Alexandra A. Malico
    • 2
  • Måns Ekelöf
    • 1
    • 2
  • Sean Lund
    • 2
    • 3
  • Gavin J. Williams
    • 2
    • 4
  • David C. Muddiman
    • 1
    • 2
  1. 1.W. M. Keck FTMS Laboratory for Human Health Research, Department of ChemistryNorth Carolina State UniversityRaleighUSA
  2. 2.Department of ChemistryNorth Carolina State UniversityRaleighUSA
  3. 3.EmeryvilleUSA
  4. 4.Comparative Medicine InstituteNorth Carolina State UniversityRaleighUSA

Personalised recommendations