Analytical and Bioanalytical Chemistry

, Volume 409, Issue 26, pp 6245–6252 | Cite as

Formaldehyde passive sampler using an optical chemical sensor: how to limit the humidity interference

  • Jane Vignau-Laulhere
  • Pierre Mocho
  • Hervé Plaisance
  • Katarzyna Raulin-Woznica
  • Thu-Hoa Tran-Thi
  • Valérie Desauziers
Research Paper


The behaviour of a new formaldehyde diffusive sampler using an optical chemical sensor with respect to high humidity conditions is examined in controlled atmospheres. Five prototypes of the radial diffusion sampler having the same chemical sensor and different designs were tested. In addition, a set of experiments were performed on the chemical sensor to characterise its efficiency of trapping water vapour in the absence and in the presence of the reactants, Fluoral-P and formaldehyde. Differences in humidity interference between the five diffusive sampler prototypes were studied and discussed. From all the results obtained, it was shown that the prototype LDE1.4 combining a small diffusion slot, a reduced internal volume and a sensor shifted upwards from the diffusion slot provided formaldehyde measurements least affected by humidity up to 80% RH at 20 °C. This new type of diffusive sampler with on-site direct reading is intended to ultimately replace conventional passive samplers with DNPH requiring offset laboratory analyses.


Radial diffusive sampler Gas sensor Fluoral-P Exposure chamber Formaldehyde 


Compliance with ethical standards

The authors declare that they have no conflict of interest.


  1. 1.
    Langer S, Ramalho O, Derbez M, Ribéron J, Kirchner S, Mandin C. Indoor environmental quality in French dwellings and building characteristics. Atmos Environ. 2016;128:82–91.CrossRefGoogle Scholar
  2. 2.
    Schauer JJ, Kleeman MJ, Cass GR, Simoneit BRT. Measurement of emissions from air pollution sources. 4. C1−C27 organic compounds from cooking with seed oils. Environ Sci Technol. 2002;36(4):567–75.CrossRefGoogle Scholar
  3. 3.
    INERIS Fiche de données toxicologiques et environnementales des substances chimiques—Formaldéhyde, 2009.Google Scholar
  4. 4.
    Casset A, Marchand C, Purohit A, Le Calve S, Uring-Lambert B, Donnay C, et al. Inhaled formaldehyde exposure: effect on bronchial response to mite allergen in sensitized asthma patients. Allergy. 2006;61(11):1344–50.CrossRefGoogle Scholar
  5. 5.
    IARC. IARC Monographs on the evaluation of carcinogenic risk to humans, vol. 88. Formaldehyde, 2-butoxyethanol and 1-tert-butoxypropan-2-ol. World health Organization, International Agency for Research on Cancer; 2006. 478pp.Google Scholar
  6. 6.
    Poulhet G, Dusanter S, Crunaire S, Locoge N, Gaudion V, Merlen C, et al. Investigation of formaldehyde sources in French schools using a passive flux sampler. Build Environ. 2014;71:111–20.CrossRefGoogle Scholar
  7. 7.
    Wisthaler A, Apel EC, Bossmeyer J, Hansel A, Junkermann W, Koppmann R, et al. Technical Note: Intercomparison of formaldehyde measurements at the atmosphere simulation chamber SAPHIR. Atmos Chem Phys. 2008;8:2189–200.CrossRefGoogle Scholar
  8. 8.
    W. Bell, N. Davies, K. Blakley, K. Lancaster, P. Quincey, and M. Henderson, A pilot study of formaldehyde monitoring in ambient air. NPL Rep. COEM S36, 2000.Google Scholar
  9. 9.
    Chiappini L, Dagnelie R, Sassine M, Fuvel F, Fable S, Tran-Thi T-H, et al. Multi-tool formaldehyde measurement in simulated and real atmospheres for indoor air survey and concentration change monitoring. Air Qual Atmos Health. 2011;4(3–4):211–20.CrossRefGoogle Scholar
  10. 10.
    Maruo YY, Nakamura J, Uchiyama M. Development of formaldehyde sensing element using porous glass impregnated with beta-diketone. Talanta. 2008;74(5):1141–7.CrossRefGoogle Scholar
  11. 11.
    Compton BJ, Purdy WC. Fluoral-P, a member of a selective family of reagents for aldehydes. Anal Chim Acta. 1980;119:349–57.CrossRefGoogle Scholar
  12. 12.
    Tran-Thi T-H, Dagnelie R, Crunaire S, Nicole L. Optical chemical sensors based on hybrid organic-inorganic sol-gel nanoreactors. Chem Soc Rev. Feb. 2011;40(2):621–39.CrossRefGoogle Scholar
  13. 13.
    E. Chevallier, T. Caron, C. Belon, P. Karpe, T.-H. Tran-Thi, S. Colomb, and Y. Bigay, Development of a formaldehyde chemical sensor for indoor air quantification: application in health and safety at work. Conf Vent Paris Fr. 2012.Google Scholar
  14. 14.
    Dagnelie RVH, Crassous A, Tran-Thi T-H. Scaling the hydrophobicity of porous materials to water vapour with Fluoral-P. J Memb Sci. 2010;365(1–2):98–105.CrossRefGoogle Scholar
  15. 15.
    Paolacci H, Dagnelie R, Dominique P, Piuzzi F, Lepetit F, Tran-Thi T-H. A ppb formaldehyde gas sensor for fast indoor air quality measurements. Sensors Transducers J. 2007;82(8):1423–30.Google Scholar
  16. 16.
    Calvo-Muñoz ML, Truong TT, Tran-Thi TH. Chemical sensors of monocyclic aromatic hydrocarbons based on sol-gel materials: kinetics of trapping of the pollutants and sensitivity of the sensor. J Mater Chem. 2002;12:461–7.CrossRefGoogle Scholar
  17. 17.
    Nash T. The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem J. 1953;55(3):416–21.CrossRefGoogle Scholar
  18. 18.
    Chevallier E, Caron T, Belon C, Karpe P, Tran-Thi T-H, Colomb S, et al. Development of a formaldehyde chemical sensor for indoor air quantification: application in health and safety at work. Paris: Vent; 2012.Google Scholar
  19. 19.
    Vignau-Laulhere J, Mocho P, Plaisance H, Raulin K, Desauziers V. Assessment of diffusion parameters of new passive samplers using optical chemical sensor for on-site measuring formaldehyde in indoor air: experimental and numerical studies. Anal Bioanal Chem. 2016;408(8):2147–57.CrossRefGoogle Scholar
  20. 20.
    Vignau-Laulhere J, Plaisance H, Mocho P, Raulin K, Bigay Y, Desauziers V. Performance of the Radiello® diffusive sampler for formaldehyde measurement: influence of exposure conditions and ozone interference. Anal Methods. 2015;7(13):5497–503.CrossRefGoogle Scholar
  21. 21.
    Décret no. 2011-1728 du 2 décembre 2011 relatif à la surveillance de la qualité de l’air intérieur dans certains établissements recevant du public.Google Scholar
  22. 22.
    Uchiyama S, Naito S, Matsumoto M, Inaba Y, Kunugita N. Improved measurement of ozone and carbonyls using a dual-bed sampling cartridge containing trans-1,2-bis(2-pyridyl) ethylene and 2,4-dinitrophenylhydrazine-impregnated silica. Anal Chem. 2009;81(15):6552–7.CrossRefGoogle Scholar
  23. 23.
    W. Bamogo, Capteurs chimiques à base de matrices nanoporeuses pour la détection de métabolites volatils de la tuberculose. Ecole Chimie de Paris-Sud, 2015.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Jane Vignau-Laulhere
    • 1
    • 2
  • Pierre Mocho
    • 3
  • Hervé Plaisance
    • 2
  • Katarzyna Raulin-Woznica
    • 1
  • Thu-Hoa Tran-Thi
    • 4
  • Valérie Desauziers
    • 2
  1. 1.EtheraCrollesFrance
  2. 2.Pôle RIME-C2MA, Ecole des Mines d’Alès, HélioparcPau Cedex 9France
  3. 3.Laboratoire Thermique Energétique et ProcédésUniversité de Pau et des Pays de l’AdourPauFrance
  4. 4.NIMBE, CEA, CNRSUniversité Paris-Saclay, CEA-SaclayGif sur Yvette CedexFrance

Personalised recommendations