Analytical and Bioanalytical Chemistry

, Volume 409, Issue 26, pp 6227–6234 | Cite as

Gold nanoparticle-based localized surface plasmon immunosensor for staphylococcal enterotoxin A (SEA) detection

  • Maroua Ben Haddada
  • David Hu
  • Michèle Salmain
  • Lu Zhang
  • Chen Peng
  • Yi Wang
  • Bo Liedberg
  • Souhir Boujday
Research Paper

Abstract

We describe the engineering of stable gold nanoparticle (AuNP) bioconjugates for the detection of staphylococcal enterotoxin A (SEA) using localized surface plasmon resonance (LSPR). Two types of AuNP bioconjugates were prepared by covalently attaching anti-SEA antibody (Ab) or SEA to AuNPs. This was achieved by reacting Traut’s reagent with lysine residues of both proteins to generate thiol groups that bind to gold atoms on the AuNP surface. These bioconjugates were characterized in-depth by absorption spectroscopy, cryo-transmission electron microscopy, dynamic light scattering, and zeta potential measurements. Their stability over time was assessed after 1 year storage in the refrigerator at 4 °C. Two formats of homogeneous binding assays were set up on the basis of monitoring of LSPR peak shifts resulting from the immunological reaction between the (i) immobilized antibody and free SEA, the direct assay, or (ii) immobilized SEA and free antibody, the competitive assay. In both formats, a correlation between the LSPR band shift and SEA concentration could be established. Though the competitive format did not meet the expected analytical performance, the direct format, the implementation of which was very simple, afforded a specific and sensitive response within a broad dynamic range—nanogram per milliliter to microgram per milliliter. The limit of detection (LOD) of SEA was estimated to equal 5 ng/mL, which was substantially lower than the LOD obtained using a quartz crystal microbalance. Moreover, the analytical performance of AuNP-Ab bioconjugate was preserved after 1 year of storage at 4 °C. Finally, the LSPR biosensor was successfully applied to the detection of SEA in milk samples. The homogeneous nanoplasmonic immunosensor described herein provides an attractive alternative for stable and reliable detection of SEA in the nanogram per milliliter range and offers a promising avenue for rapid, easy to implement, and sensitive biotoxin detection.

Sensitive LSPR Biosensing of SEA in buffer and milk using stable AuNP-Antibody bioconjugates

Graphical abstract

Keywords

Immunosensor Localized surface plasmon resonance Staphylococcal enterotoxin A Gold nanoparticles 

Notes

Acknowledgements

We would like to thank the DIM Analytics and Region Ile-de-France for M. Ben Haddada PhD scholarship. We also thank Anton Paar for the access to Litesizer™ 500 apparatus. This work was supported by the iFood initiative Nanyang Technological University, by the French-Singaporean PHC Merlion program (grant 5.03.15), and by the ANR-FWF program (grant ANR-15-CE29-0026).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

216_2017_563_MOESM1_ESM.pdf (633 kb)
ESM 1 (PDF 633 kb)

References

  1. 1.
    Hennekinne J-A, De Buyser M-L, Dragacci S. Staphylococcus aureus and its food poisoning toxins: characterization and outbreak investigation. FEMS Microbiol Rev. 2012;36:815–36.CrossRefGoogle Scholar
  2. 2.
    Le Loir Y, Baron F, Gautier M. Staphylococcus aureus and food poisoning. Genet Mol Res. 2003;2(1):63–76.Google Scholar
  3. 3.
    Jans H, Huo Q. Gold nanoparticle-enabled biological and chemical detection and analysis. Chem Soc Rev. 2012;41(7):2849–66. doi: 10.1039/C1CS15280G.CrossRefGoogle Scholar
  4. 4.
    Mayer KM, Hafner JH. Localized surface plasmon resonance sensors. Chem Rev. 2011;111(6):3828–57. doi: 10.1021/cr100313v.CrossRefGoogle Scholar
  5. 5.
    Sepulveda B, Angelome PC, Lechuga LM, Liz-Marzan LM. LSPR-based nanobiosensors. Nano Today. 2009;4(3):244–51. doi: 10.1016/j.nantod.2009.04.001.CrossRefGoogle Scholar
  6. 6.
    Rong-Hwa S, Shiao-Shek T, Der-Jiang C, Yao-Wen H. Gold nanoparticle-based lateral flow assay for detection of staphylococcal enterotoxin B. Food Chem. 2010;118(2):462–6. doi: 10.1016/j.foodchem.2009.04.106.CrossRefGoogle Scholar
  7. 7.
    Wang WB, Liu LQ, Xu LG, Kuang H, Zhu JP, Xu CL. Gold-nanoparticle-based multiplexed immunochromatographic strip for simultaneous detection of staphylococcal enterotoxin A, B, C, D, and E. Part Part Syst Charact. 2016;33(7):388–95. doi: 10.1002/ppsc.201500219.CrossRefGoogle Scholar
  8. 8.
    Englebienne P. Use of colloidal gold surface plasmon resonance peak shift to infer affinity constants from the interactions between protein antigens and antibodies specific for single or multiple epitopes. Analyst. 1998;123(7):1599–603. doi: 10.1039/A804010I.CrossRefGoogle Scholar
  9. 9.
    Mayer KM, Lee S, Liao H, Rostro BC, Fuentes A, Scully PT, et al. A label-free immunoassay based upon localized surface plasmon resonance of gold Nanorods. ACS Nano. 2008;2(4):687–92. doi: 10.1021/nn7003734.
  10. 10.
    Nath N, Chilkoti A. Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size. Anal Chem. 2004;76(18):5370–8. doi: 10.1021/ac049741z.CrossRefGoogle Scholar
  11. 11.
    Liu XH, Wang Y, Chen P, Wang YS, Mang JL, Aili D, et al. Biofunctionalized gold nanoparticles for colorimetric sensing of Botulinum neurotoxin A light chain. Anal Chem. 2014;86(5):2345–52. doi: 10.1021/ac402626g.
  12. 12.
    Zhao W, Brook MA, Li Y. Design of Gold Nanoparticle-Based Colorimetric biosensing assays. Chembiochem. 2008;9(15):2363–71. doi: 10.1002/cbic.200800282.CrossRefGoogle Scholar
  13. 13.
    Montenegro J-M, Grazu V, Sukhanova A, Agarwal S, de la Fuente JM, Nabiev I, et al. Controlled antibody/(bio-) conjugation of inorganic nanoparticles for targeted delivery. Adv Drug Deliv Rev. 2013;65(5):677–88. doi: 10.1016/j.addr.2012.12.003.
  14. 14.
    Wang Z, Ma L. Gold nanoparticle probes. Coord Chem Rev. 2009;253(11–12):1607–18. doi: 10.1016/j.ccr.2009.01.005.CrossRefGoogle Scholar
  15. 15.
    Wang X, Mei Z, Wang Y, Tang L. Comparison of four methods for the biofunctionalization of gold nanorods by the introduction of sulfhydryl groups to antibodies. Beilstein J Nanotechnol. 2017;8:372–80. doi: 10.3762/bjnano.8.39.CrossRefGoogle Scholar
  16. 16.
    Boujday S, Bantegnie A, Briand E, Marnet P-G, Salmain M, Pradier C-M. In-depth investigation of protein adsorption on gold surfaces: correlating the structure and density to the efficiency of the sensing layer. J Phys Chem B. 2008;112(21):6708–15.CrossRefGoogle Scholar
  17. 17.
    Wang X, Mei Z, Wang Y, Tang L. Gold nanorod biochip functionalization by antibody thiolation. Talanta. 2015;136:1–8. doi: 10.1016/j.talanta.2014.11.023.CrossRefGoogle Scholar
  18. 18.
    Slot JW, Geuze HJ. A method to prepare isodisperse colloidal gold sols in the size range 3–17 NM. Ultramicroscopy. 1984;15(4):383. doi: 10.1016/0304-3991(84)90144-X.CrossRefGoogle Scholar
  19. 19.
    Ben Haddada M, Huebner M, Casale S, Knopp D, Niessner R, Salmain M, et al. Gold nanoparticles assembly on silicon and gold surfaces: mechanism, stability, and efficiency in diclofenac biosensing. J Phys Chem C. 2016;120:29302–11.Google Scholar
  20. 20.
    Dixit CK, Kaushik A. Nano-structured arrays for multiplex analyses and lab-on-a-chip applications. Biochem Biophys Res Commun. 2012;419(2):316–20. doi: 10.1016/j.bbrc.2012.02.018.CrossRefGoogle Scholar
  21. 21.
    Sule Shantanu V, Sukumar M, Weiss William F IV, Marcelino-Cruz Anna M, Sample T, Tessier Peter M. High-throughput analysis of concentration-dependent antibody self-association. Biophys J. 2011;101(7):1749–57. doi: 10.1016/j.bpj.2011.08.036.CrossRefGoogle Scholar
  22. 22.
    Hermanson GT. Chapter 1—functional targets. In: bioconjugate techniques. Second ed. New York: Academic Press; 2008. p. 1–168. doi: 10.1016/B978-0-12-370501-3.00001-1.Google Scholar
  23. 23.
    Hermanson GT. Chapter 24—Preparation of colloidal gold-labeled proteins. In: Hermanson GT, editor. Bioconjugate techniques. Second ed. New York: Academic Press; 2007. p. 924–35. doi: 10.1016/B978-0-12-370501-3.00024-2.
  24. 24.
    Chen P, Liedberg B. Curvature of the localized surface plasmon resonance peak. Anal Chem. 2014;86(15):7399–405. doi: 10.1021/ac500883x.CrossRefGoogle Scholar
  25. 25.
    Xia H, Xiahou Y, Zhang P, Ding W, Wang D. Revitalizing the Frens method to synthesize uniform, quasi-spherical gold nanoparticles with deliberately regulated sizes from 2 to 330 nm. Langmuir. 2016;32(23):5870–80. doi: 10.1021/acs.langmuir.6b01312.CrossRefGoogle Scholar
  26. 26.
    Sperling RA, Parak WJ. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos Trans R Soc A Math Phys Eng Sci. 2010;368(1915):1333–83. doi: 10.1098/rsta.2009.0273.CrossRefGoogle Scholar
  27. 27.
    Thobhani S, Attree S, Boyd R, Kumarswami N, Noble J, Szymanski M, et al. Bioconjugation and characterisation of gold colloid-labelled proteins. J Immunol Methods. 2010;356(1–2):60–9. doi: 10.1016/j.jim.2010.02.007.
  28. 28.
    Klein JS, Gnanapragasam PNP, Galimidi RP, Foglesong CP, West AP, Bjorkman PJ. Examination of the contributions of size and avidity to the neutralization mechanisms of the anti-HIV antibodies b12 and 4E10. Proc Natl Acad Sci. 2009;106(18):7385–90. doi: 10.1073/pnas.0811427106.CrossRefGoogle Scholar
  29. 29.
    Hinterwirth H, Stübiger G, Lindner W, Lämmerhofer M. Gold nanoparticle-conjugated anti-oxidized low-density lipoprotein antibodies for targeted Lipidomics of oxidative stress biomarkers. Anal Chem. 2013;85(17):8376–84. doi: 10.1021/ac401778f.CrossRefGoogle Scholar
  30. 30.
    Yang WJ, Trau D, Renneberg R, Yu NT, Caruso F. Layer-by-layer construction of novel biofunctional fluorescent microparticles for immunoassay applications. J Colloid Interface Sci. 2001;234(2):356–62. doi: 10.1006/jcis.2000.7325.CrossRefGoogle Scholar
  31. 31.
    Geoghegan WD. The effect of three variables on adsorption of rabbit IgG to colloidal gold. J Histochem Cytochem. 1988;36(4):401–7. doi: 10.1177/36.4.3346540.CrossRefGoogle Scholar
  32. 32.
    Liu X, Huo Q. A washing-free and amplification-free one-step homogeneous assay for protein detection using gold nanoparticle probes and dynamic light scattering. J Immunol Methods. 2009;349(1–2):38–44. doi: 10.1016/j.jim.2009.07.015.CrossRefGoogle Scholar
  33. 33.
    Tsai CS, Yu TB, Chen CT. Gold nanoparticle-based competitive colorimetric assay for detection of protein-protein interactions. Chem Commun. 2005;34:4273–5. doi: 10.1039/b507237a.CrossRefGoogle Scholar
  34. 34.
    Salmain M, Ghasemi M, Boujday S, Pradier CM. Elaboration of a reusable immunosensor for the detection of staphylococcal enterotoxin A (SEA) in milk with a quartz crystal microbalance. Sens Actuator B Chem. 2012;173:148–56. doi: 10.1016/j.snb.2012.06.052.CrossRefGoogle Scholar
  35. 35.
    Salmain M, Ghasemi M, Boujday S, Spadavecchia J, Techer C, Val F, et al. Piezoelectric immunosensor for direct and rapid detection of staphylococcal enterotoxin A (SEA) at the ng level. Biosens Bioelectron. 2011;29(1):140–4. doi: 10.1016/j.bios.2011.08.007.

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Maroua Ben Haddada
    • 1
    • 2
  • David Hu
    • 1
  • Michèle Salmain
    • 2
  • Lu Zhang
    • 1
    • 3
    • 4
  • Chen Peng
    • 3
  • Yi Wang
    • 3
  • Bo Liedberg
    • 3
  • Souhir Boujday
    • 1
    • 4
  1. 1.UPMC Univ Paris 6, CNRS, Laboratoire de Réactivité de Surface (LRS)Sorbonne UniversitésParisFrance
  2. 2.UPMC Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire (IPCM)Sorbonne UniversitésParisFrance
  3. 3.Centre for Biomimetic Sensor Science, School of Material Science and EngineeringNanyang Technological UniversityNanyangSingapore
  4. 4.MajuLab, UMI 3654, CNRS-UNS-NUS-NTU International Joint Research UnitNanyangSingapore

Personalised recommendations