Advertisement

Analytical and Bioanalytical Chemistry

, Volume 409, Issue 24, pp 5711–5721 | Cite as

Optical biosensor optimized for continuous in-line glucose monitoring in animal cell culture

  • Mircea Tric
  • Mario Lederle
  • Lisa Neuner
  • Igor Dolgowjasow
  • Philipp Wiedemann
  • Stefan Wölfl
  • Tobias Werner
Research Paper

Abstract

Biosensors for continuous glucose monitoring in bioreactors could provide a valuable tool for optimizing culture conditions in biotechnological applications. We have developed an optical biosensor for long-term continuous glucose monitoring and demonstrated a tight glucose level control during cell culture in disposable bioreactors. The in-line sensor is based on a commercially available oxygen sensor that is coated with cross-linked glucose oxidase (GOD). The dynamic range of the sensor was tuned by a hydrophilic perforated diffusion membrane with an optimized permeability for glucose and oxygen. The biosensor was thoroughly characterized by experimental data and numerical simulations, which enabled insights into the internal concentration profile of the deactivating by-product hydrogen peroxide. The simulations were carried out with a one-dimensional biosensor model and revealed that, in addition to the internal hydrogen peroxide concentration, the turnover rate of the enzyme GOD plays a crucial role for biosensor stability. In the light of this finding, the glucose sensor was optimized to reach a long functional stability (>52 days) under continuous glucose monitoring conditions with a dynamic range of 0–20 mM and a response time of t 90 ≤ 10 min. In addition, we demonstrated that the sensor was sterilizable with beta and UV irradiation and only subjected to minor cross sensitivity to oxygen, when an oxygen reference sensor was applied.

Graphical abstract

Measuring setup of a glucose biosensor in a shake flask for continuous glucose monitoring in mammalian cell culture

Keywords

Optical biosensor Glucose monitoring Bioreactor Cell culture 

Notes

Acknowledgements

We gratefully acknowledge the financial support from the Bundesministerium für Bildung und Forschung (BMBF) program of the German Science & Engineering Foundation (0101-31P7809) and the support from Steinbeis Zentrum für Angewandte Biologische Chemie, Mannheim and PreSens GmbH, Regensburg.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2017_511_MOESM1_ESM.pdf (132 kb)
ESM 1 (PDF 132 kb)

References

  1. 1.
    Landgrebe D, Haake C, Höpfner T, Beutel S, Hitzmann B, Scheper T, et al. On-line infrared spectroscopy for bioprocess monitoring. Appl Microbiol Biotechnol. 2010;88:11–22. doi: 10.1007/s00253-010-2743-8.CrossRefGoogle Scholar
  2. 2.
    Moser I, Jobst G. Pre-calibrated biosensors for single-use applications. Chem Ing Tech. 2013;85:172–8. doi: 10.1002/cite.201200129.CrossRefGoogle Scholar
  3. 3.
    Steiner M-S, Duerkop A, Wolfbeis OS. Optical methods for sensing glucose. Chem Soc Rev. 2011;40:4805–39. doi: 10.1039/C1CS15063D.CrossRefGoogle Scholar
  4. 4.
    Kleppe K. The effect of hydrogen peroxide on glucose oxidase from Aspergillus niger*. Biochemistry (Mosc). 1966;5:139–43. doi: 10.1021/bi00865a018.CrossRefGoogle Scholar
  5. 5.
    Bao J, Furumoto K, Yoshimoto M, Fukunaga K, Nakao K. Competitive inhibition by hydrogen peroxide produced in glucose oxidation catalyzed by glucose oxidase. Biochem Eng J. 2003;13:69–72. doi: 10.1016/S1369-703X(02)00120-1.CrossRefGoogle Scholar
  6. 6.
    Greenfield PF, Kittrell JR, Laurence RL. Inactivation of immobilized glucose oxidase by hydrogen peroxide. Anal Biochem. 1975;65:109–24. doi: 10.1016/0003-2697(75)90497-2.CrossRefGoogle Scholar
  7. 7.
    Tse PHS, Gough DA. Time-dependent inactivation of immobilized glucose oxidase and catalase. Biotechnol Bioeng. 1987;29:705–13. doi: 10.1002/bit.260290607.CrossRefGoogle Scholar
  8. 8.
    Weltin A, Kieninger J, Urban GA. Microfabricated, amperometric, enzyme-based biosensors for in vivo applications. Anal Bioanal Chem. 2016;408:4503–21. doi: 10.1007/s00216-016-9420-4.CrossRefGoogle Scholar
  9. 9.
    Senthamizhan A, Balusamy B, Uyar T. Glucose sensors based on electrospun nanofibers: a review. Anal Bioanal Chem. 2016;408:1285–306. doi: 10.1007/s00216-015-9152-x.CrossRefGoogle Scholar
  10. 10.
    Spichiger S, Spichiger-Keller UE. Process monitoring with disposable chemical sensors fit in the framework of process analysis technology (PAT) for innovative pharmaceutical development and quality assurance. Chimia. 2010;64:803–7.CrossRefGoogle Scholar
  11. 11.
    Pasic A, Koehler H, Klimant I, Schaupp L. Miniaturized fiber-optic hybrid sensor for continuous glucose monitoring in subcutaneous tissue. Sens Actuators B Chem. 2007;122:60–8. doi: 10.1016/j.snb.2006.05.010.CrossRefGoogle Scholar
  12. 12.
    Rumpler M, Mader JK, Fischer JP, Thar R, Granger JM, Deliane F, et al. First application of a transcutaneous optical single-port glucose monitoring device in patients with type 1 diabetes mellitus. Biosens Bioelectron. 2017;88:240–8. doi: 10.1016/j.bios.2016.08.039.CrossRefGoogle Scholar
  13. 13.
    Lochead J, Schessner J, Werner T, Wölfl S. Time-Resolved Cell Culture Assay Analyser (TReCCA Analyser) for the analysis of on-line data: data integration—sensor correction—time-resolved IC 50 determination. PLoS One. 2015;10:e0131233. doi: 10.1371/journal.pone.0131233.CrossRefGoogle Scholar
  14. 14.
    Bankar SB, Bule MV, Singhal RS, Ananthanarayan L. Glucose oxidase—an overview. Biotechnol Adv. 2009;27:489–501. doi: 10.1016/j.biotechadv.2009.04.003.CrossRefGoogle Scholar
  15. 15.
    Bergmeyer HU. Methods of enzymatic analysis. Weinheim: Verlag Chemie; 1974.Google Scholar
  16. 16.
    Gibson QH, Swoboda BE, Massey V. Kinetics and mechanism of action of glucose oxidase. J Biol Chem. 1964;239:3927–34.Google Scholar
  17. 17.
    Banica F-G. Chemical sensors and biosensors: fundamentals and applications. Chichester: Wiley; 2012.CrossRefGoogle Scholar
  18. 18.
    Parker JW, Schwartz CS. Modeling the kinetics of immobilized glucose oxidase. Biotechnol Bioeng. 1987;30:724–35. doi: 10.1002/bit.260300605.CrossRefGoogle Scholar
  19. 19.
    Jones P, Suggett A. The catalase–hydrogen peroxide system. Kinetics of catalatic action at high substrate concentrations. Biochem J. 1968;110:617–20.CrossRefGoogle Scholar
  20. 20.
    Tse PHS, Leypoldt JK, Gough DA. Determination of the intrinsic kinetic constants of immobilized glucose oxidase and catalase. Biotechnol Bioeng. 1987;29:696–704. doi: 10.1002/bit.260290606.CrossRefGoogle Scholar
  21. 21.
    Shrivastava A, Gupta VB. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron Young Sci. 2011;2:21. doi: 10.4103/2229-5186.79345.CrossRefGoogle Scholar
  22. 22.
    Pasic A, Koehler H, Schaupp L, Pieber TR, Klimant I. Fiber-optic flow-through sensor for online monitoring of glucose. Anal Bioanal Chem. 2006;386:1293–302. doi: 10.1007/s00216-006-0782-x.CrossRefGoogle Scholar
  23. 23.
    Buchholz K, Gödelmann B. Macrokinetics and operational stability of immobilized glucose oxidase and catalase. Biotechnol Bioeng. 1978;20:1201–20. doi: 10.1002/bit.260200807.CrossRefGoogle Scholar
  24. 24.
    Blandino A, Macías M, Cantero D. Calcium alginate gel as encapsulation matrix for coimmobilized enzyme systems. Appl Biochem Biotechnol. 2003;110:53–60. doi: 10.1385/ABAB:110:1:53.CrossRefGoogle Scholar
  25. 25.
    Bankar SB, Bule MV, Singhal RS, Ananthanarayan LA. Co-immobilization of glucose oxidase-catalase: optimization of immobilization parameters to improve the immobilization yield. Int J Food Eng. 2011; doi: 10.2202/1556-3758.1919.
  26. 26.
    Yoshimoto M, Sato M, Wang S, Fukunaga K, Nakao K. Structural stability of glucose oxidase encapsulated in liposomes to inhibition by hydrogen peroxide produced during glucose oxidation. Biochem Eng J. 2006;30:158–63. doi: 10.1016/j.bej.2006.03.004.CrossRefGoogle Scholar
  27. 27.
    Mirón J, González MP, Vázquez JA, Pastrana L, Murado MA. A mathematical model for glucose oxidase kinetics, including inhibitory, deactivant and diffusional effects, and their interactions. Enzym Microb Technol. 2004;34:513–22. doi: 10.1016/j.enzmictec.2003.12.003.CrossRefGoogle Scholar
  28. 28.
    Blandino A, Macías M, Cantero D. Modelling and simulation of a bienzymatic reaction system co-immobilised within hydrogel-membrane liquid-core capsules. Enzym Microb Technol. 2002;31:556–65. doi: 10.1016/S0141-0229(02)00154-0.CrossRefGoogle Scholar
  29. 29.
    Albin G, Horbett TA, Ratner BD. Glucose sensitive membranes for controlled delivery of insulin: insulin transport studies. J Control Release. 1985;2:153–64. doi: 10.1016/0168-3659(85)90041-0.CrossRefGoogle Scholar
  30. 30.
    Dayal R, Godjevargova T. Pore diffusion studies with immobilized glucose oxidase plus catalase membranes. Enzym Microb Technol. 2006;39:1313–8. doi: 10.1016/j.enzmictec.2006.03.018.CrossRefGoogle Scholar
  31. 31.
    Brandrup J, Edmund H. Polymer handbook. 4th ed. New York: Wiley; 1999.Google Scholar
  32. 32.
    Mafra ACO, Kopp W, Ramos MD, Beltrame MB, Ribeiro MPA, Badino AC, Tardioli PW. Cross-linked enzyme aggregates of catalase from bovine liver. In: Blucher Chem. Eng. Proc; 2015;1(2):1714–1721.Google Scholar
  33. 33.
    Hsieh DPH, Silver RS, Mateles RI. Use of the glucose oxidase system to measure oxygen transfer rates. Biotechnol Bioeng. 1969;11:1–18. doi: 10.1002/bit.260110102.CrossRefGoogle Scholar
  34. 34.
    Bolivar JM, Consolati T, Mayr T, Nidetzky B. Quantitating intraparticle O2 gradients in solid supported enzyme immobilizates: experimental determination of their role in limiting the catalytic effectiveness of immobilized glucose oxidase. Biotechnol Bioeng. 2013;110:2086–95. doi: 10.1002/bit.24873.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Mircea Tric
    • 1
    • 2
  • Mario Lederle
    • 1
    • 2
  • Lisa Neuner
    • 1
    • 2
  • Igor Dolgowjasow
    • 2
  • Philipp Wiedemann
    • 3
  • Stefan Wölfl
    • 1
  • Tobias Werner
    • 2
  1. 1.Institute of Pharmacy and Molecular Biotechnology (IPMB)Heidelberg UniversityHeidelbergGermany
  2. 2.Institute of Analytical ChemistryUniversity of Applied Sciences MannheimMannheimGermany
  3. 3.Institute of Molecular and Cell BiologyUniversity of Applied Sciences MannheimMannheimGermany

Personalised recommendations