Advertisement

Analytical and Bioanalytical Chemistry

, Volume 409, Issue 22, pp 5359–5371 | Cite as

Fast detection of Listeria monocytogenes through a nanohybrid quantum dot complex

  • Wendy Donoso
  • Ricardo I. Castro
  • Luis Guzmán
  • Zoraya López-Cabaña
  • Fabiane M. Nachtigall
  • Leonardo S. Santos
Research Paper

Abstract

Listeria monocytogenes is a recognized foodborne pathogen that causes listeriosis in susceptible consumers. Currently, the detection systems for Listeria in food detect live and dead bacteria, being the viable microorganisms most relevant for their ability to cause sickness in the population at risk. For this reason, a new nanohybrid compound was developed for the optical detection of Listeria that was based on polyamidoamine dendrimers functionalized with an auxotrophic cofactor (lipoic acid), together with the coupling of fluorescent semiconductor crystals (quantum dots). The nanohybrid sensor has a detection limit for viable L. monocytogenes of 5.19 × 103 colony-forming units per milliliter under epifluorescence microscopy. It was specific when used among other pathogens commonly found in food.

Keywords

Dendrimers Listeria monocytogenes Optical detection Quantum dots 

Notes

Acknowledgement

L.G. and L.S.S. thank FONDECYT (FONDECYT Initiation no. 11150390 and Regular no. 1140642). Additional financial support from PIEI (QUI-BIO) from Universidad de Talca is greatly acknowledged. 

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Contributions

L.S.S. and W.D. conceived and designed the experiments; R.I.C., L.G., F.M.N., and Z.L.C. performed research and analyzed the data. All authors analyzed and interpreted data, drafted the paper, and read and approved the final manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Välima A, Tilsala-Timisjärvi A, Virtanen E. Rapid detection and identification methods for Listeria monocytogenes in the food chain – a review. Food Control. 2015;55:103–14. doi: 10.1016/j.foodcont.2015.02.037.CrossRefGoogle Scholar
  2. 2.
    Walker SJ, Archer P, Banks JG. Growth of Listeria monocytogenes at refrigeration temperatures. J Appl Bacteriol. 1990;68(2):157–62.CrossRefGoogle Scholar
  3. 3.
    Sauders BD, Overdevest J, Fortes E, Windham K, Schukken Y, Lembo A, et al. Diversity of Listeria species in urban and natural environments. Appl Environ Microbiol. 2012;78(12):4420–33. doi: 10.1128/aem.00282-12.CrossRefGoogle Scholar
  4. 4.
    Silk BJ, Date KA, Jackson KA, Pouillot R, Holt KG, Graves LM, et al. Invasive listeriosis in the Foodborne Diseases Active Surveillance Network (FoodNet), 2004-2009: further targeted prevention needed for higher-risk groups. Clin Infect Dis. 2012;54 Suppl 5:S396–404. doi: 10.1093/cid/cis268.CrossRefGoogle Scholar
  5. 5.
    Schlech 3rd WF, Lavigne PM, Bortolussi RA, Allen AC, Haldane EV, Wort AJ, et al. Epidemic listeriosis—evidence for transmission by food. N Engl J Med. 1983;308(4):203–6. doi: 10.1056/nejm198301273080407.CrossRefGoogle Scholar
  6. 6.
    Crowe SJ, Mahon BE, Vieira AR, Gould LH. Vital signs: multistate foodborne outbreaks - United States, 2010-2014. MMWR Morb Mortal Wkly Rep. 2015;64(43):1221–5. doi: 10.15585/mmwr.mm6443a4.CrossRefGoogle Scholar
  7. 7.
    Dwivedi HP, Jaykus LA. Detection of pathogens in foods: the current state-of-the-art and future directions. Crit Rev Microbiol. 2011;37(1):40–63. doi: 10.3109/1040841x.2010.506430.CrossRefGoogle Scholar
  8. 8.
    Hitchins A, Jinneman K. Laboratory methods - BAM: detection and enumeration of Listeria monocytogenes. US Food and Drug Administration, Silver Spring. http://www.fda.gov/Food/FoodScienceResearch/LaboratoryMethods/ucm071400.htm (2016). Accessed 4 Apr 16.
  9. 9.
    Soejima T, Iida K, Qin T, Taniai H, Seki M, Yoshida S. Method to detect only live bacteria during PCR amplification. J Clin Microbiol. 2008;46(7):2305–13. doi: 10.1128/jcm.02171-07.CrossRefGoogle Scholar
  10. 10.
    Koyun A, Ahlatcıoğlu E, İpek YK. Biosensors and their principles. In: Kara S, editor. A roadmap of biomedical engineers and milestones. Rijeka: In Tech; 2012.  10.5772/48824
  11. 11.
    Chekina C, Horák D, Jendelová P, Trchová M, Beneš M, Hrubý M, et al. Fluorescent magnetic nanoparticles for biomedical applications. J Mater Chem. 2011;21:7630–9. doi: 10.1039/C1JM10621J.CrossRefGoogle Scholar
  12. 12.
    Gao X, Cui Y, Levenson RM, Chung LW, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol. 2004;22(8):969–76. doi: 10.1038/nbt994.CrossRefGoogle Scholar
  13. 13.
    Wang L, Zhao W, Tan W. Bioconjugated silica nanoparticles: development and applications. Nano Res. 2008;1(2):99–115. doi: 10.1007/s12274-008-8018-3.CrossRefGoogle Scholar
  14. 14.
    Ahmed A, Rushworth JV, Hirst NA, Millner PA. Biosensors for whole-cell bacterial detection. Clin Microbiol Rev. 2014;27(3):631–46. doi: 10.1128/cmr.00120-13.CrossRefGoogle Scholar
  15. 15.
    Abbasi E, Aval SF, Akbarzadeh A, Milani M, Nasrabadi HT, Joo SW, et al. Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett. 2014;9(1):247. doi: 10.1186/1556-276x-9-247.CrossRefGoogle Scholar
  16. 16.
    Chang AC, Gillespie JB, Tabacco MB. Enhanced detection of live bacteria using a dendrimer thin film in an optical biosensor. Anal Chem. 2001;73(3):467–70.CrossRefGoogle Scholar
  17. 17.
    Ji J, Schanzle J, Tabacco M. Real-time detection of bacterial contamination in dynamic aqueous environments using optical sensors. Anal Chem. 2004;76(5):1411–8. doi: 10.1021/ac034914q.CrossRefGoogle Scholar
  18. 18.
    Deisingh A, Thompson M. Biosensors for the detection of bacteria. Can J Microbiol. 2004;50(2):69–77.CrossRefGoogle Scholar
  19. 19.
    Sarkar A, Kaganove S, Dvornic P, Satoh P. Colorimetric biosensors based on polydiacetylene (PDA) and polyamidoamine (PAMAM) dendrimers. Polymer News. 2005;30(12):370–7.CrossRefGoogle Scholar
  20. 20.
    Petit A, Eullaffroyb P, Debenesta T, Gagnéa F. Toxicity of PAMAM dendrimers to Chlamydomonas reinhardtii. Aquat Toxicol. 2010;100(2):187–93. doi: 10.1016/j.aquatox.2010.01.019.CrossRefGoogle Scholar
  21. 21.
    Lopez A, Reins R, McDermott A, Trautner B, Cai C. Antibacterial activity and cytotoxicity of PEGylated poly(amidoamine) dendrimers. Mol Biosyst. 2009;5(10):1148–56. doi: 10.1039/b904746h.CrossRefGoogle Scholar
  22. 22.
    Lu Y, Slomberg D, Shah A, Schoenfisch M. Nitric oxide-releasing amphiphilic poly(amidoamine) (PAMAM) dendrimers as antibacterial agents. Biomacromolecules. 2013;14(10):3589–98. doi: 10.1021/bm400961r.CrossRefGoogle Scholar
  23. 23.
    Zhao J, Jensen L, Sung J, Zou S, Schatz G, Van Duyne R. Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles. Am Chem Soc. 2007;129(24):7647–56.CrossRefGoogle Scholar
  24. 24.
    Ren H, Kulkarni D, Kodiyath R, Xu W, Choi I, Tsukruk V. Competitive adsorption of dopamine and rhodamine 6G on the surface of graphene oxide. Appl Mater Interfaces. 2014;6(4):2459–70. doi: 10.1021/am404881p.CrossRefGoogle Scholar
  25. 25.
    Jin S, Xu Z, Chen J, Liang X, Wu J, Qian X. Determination of organophosphate and carbamate pesticides based on enzyme inhibition using a pH-sensitive fluorescence probe. Anal Chim Acta. 2004;523(1):117–23. doi: 10.1016/j.aca.2004.05.030.CrossRefGoogle Scholar
  26. 26.
    Rosenthal S, Chang J, Kovtun O, McBride J, Tomlinson I. Biocompatible quantum dots for biological applications. Chem Biol. 2011;18(1):10–24. doi: 10.1016/j.chembiol.2010.11.013.CrossRefGoogle Scholar
  27. 27.
    Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T. Quantum dots versus organic dyes as fluorescent labels. Nat Methods. 2008;5(9):763–75. doi: 10.1038/nmeth.1248.CrossRefGoogle Scholar
  28. 28.
    Geraldo DA, Duran-Lara EF, Aguayo D, Cachau RE, Tapia J, Esparza R, et al. Supramolecular complexes of quantum dots and a polyamidoamine (PAMAM)-folate derivative for molecular imaging of cancer cells. Anal Bioanal Chem. 2011;400(2):483–92. doi: 10.1007/s00216-011-4756-2.CrossRefGoogle Scholar
  29. 29.
    Miao T, Wang Z, Li S, Wang X. Sensitive fluorescent detection of Staphylococcus aureususing nanogold linked CdTe nanocrystals as signal amplification labels. Microchim Acta. 2011;172(3):431–7. doi: 10.1007/s00604-010-0505-z.CrossRefGoogle Scholar
  30. 30.
    Gaan S, He G, Feenstra R, Walker J, Towe E. Size, shape, composition, and electronic properties of InAs/GaAs quantum dots by scanning tunneling microscopy and spectroscopy. J Appl Phys. 2010;108(11):1–13. doi: 10.1063/1.3518680.CrossRefGoogle Scholar
  31. 31.
    Byrne B, Stack E, Gilmartin N, O'Kennedy R. Antibody-based sensors: principles, problems and potential for detection of pathogens and associated toxins. Sensors (Basel). 2009;9(6):4407–45. doi: 10.3390/s90604407.CrossRefGoogle Scholar
  32. 32.
    Halford C, Gau V, Churchill BM, Haake DA. Bacterial detection & identification using electrochemical sensors. J Vis Exp. 2013;74:1–8. doi: 10.3791/4282.Google Scholar
  33. 33.
    Tsai H, Hodgson D. Development of a synthetic minimal medium for Listeria monocytogenes. Appl Environ Microbiol. 2003;69(11):6943–5. doi: 10.1128/aem.69.11.6943-6945.2003.CrossRefGoogle Scholar
  34. 34.
    Spalding MD, Prigge ST. Lipoic acid metabolism in microbial pathogens. Microbiol Mol Biol Rev. 2010;74(2):200–28.CrossRefGoogle Scholar
  35. 35.
    Christensen QH, Hagar JA, O'Riordan MX, Cronan JE. A complex lipoate utilization pathway in Listeria monocytogenes. J Biol Chem. 2011;286(36):31447–56. doi: 10.1074/jbc.M111.273607.CrossRefGoogle Scholar
  36. 36.
    Keeney KM, Stuckey JA, O'Riordan MX. LplA1-dependent utilization of host lipoyl peptides enables Listeria cytosolic growth and virulence. Mol Microbiol. 2007;66(3):758–70. doi: 10.1111/j.1365-2958.2007.05956.x.CrossRefGoogle Scholar
  37. 37.
    Wang H, Li Y, Slavic M. Rapid Detection of Listeria monocytogens using quantum dots and nanobeads-based optical biosensor. J Rapid Methods Autom Microbiol. 2007;15(1):67–76. doi: 10.1111/j.1745-4581.2007.00075.x.CrossRefGoogle Scholar
  38. 38.
    Sun W, Qi X, Zhang Y, Yang H, Gao H, Chen Y, et al. Electrochemical DNA biosensor for the detection of Listeria monocytogenes with dendritic nanogold and electrochemical reduced graphene modified carbon ionic liquid electrode. Electrochim Acta. 2012;85:145–51. doi: 10.1016/j.electacta.2012.07.133.CrossRefGoogle Scholar
  39. 39.
    Davis D, Guo X, Musavi L, Lin C-S, Chen S-H, Wu V. Gold nanoparticle-modified carbon electrode biosensor for the detection of Listeria monocytogenes. Ind Biotechnol. 2013;9(1):31–6. doi: 10.1089/ind.2012.0033.CrossRefGoogle Scholar
  40. 40.
    Li L, Qian H, Fang N, Ren J. Significant enhancement of the quantum yield of CdTe nanocrystals synthesized in aqueous phase by controlling the pH and concentrations of precursor solutions. J Lumin. 2006;116(1–2):59–66. doi: 10.1016/j.jlumin.2005.03.001.CrossRefGoogle Scholar
  41. 41.
    An LM, Yang YQ, Su WH, Yi J, Liu CX, Chao KF, et al. Enhanced fluorescence from CdTe quantum dots self-assembled on the surface of silver nanoparticles. J Nanosci Nanotechnol. 2010;10(3):2099–103.CrossRefGoogle Scholar
  42. 42.
    Klayman D, Griffin T. Reaction of selenium with sodium borohydride in protic solvents. A facile method for the introduction of selenium into organic molecules. J Am Chem Soc. 1973;95(1):197–99. doi: 10.1021/ja00782a034.CrossRefGoogle Scholar
  43. 43.
    Park S, Chibli H, Nadeau J. Solubilization and bio-conjugation of quantum dots and bacterial toxicity assays by growth curve and plate count. J Vis Exp. 2012;65, e3969. doi: 10.3791/3969.Google Scholar
  44. 44.
    Zhao X, Hilliard LR, Mechery SJ, Wang Y, Bagwe RP, Jin S, et al. A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proc Natl Acad Sci U S A. 2004;101(42):15027–32. doi: 10.1073/pnas.0404806101.CrossRefGoogle Scholar
  45. 45.
    Mesa M, Macías M, Cantero D, Barja F. Use of the direct epifluorescent filter technique for the enumeration of viable and total acetic acid bacteria from vinegar fermentation. J Fluoresc. 2003;13(3):261–5. doi: 10.1023/A:1025094017265.CrossRefGoogle Scholar
  46. 46.
    Maturin L, Peeler J. Laboratory methods - BAM: aerobic plate count. US Food and Drug Administration, Silver Spring. http://www.fda.gov/Food/FoodScienceResearch/LaboratoryMethods/ucm063346.htm (2001). Accessed 4 Apr 16.
  47. 47.
    Vogelgesang J, Hädrich J. Limits of detection, identification and determination: a statistical approach for practitioners. Accred Qual Assur. 1998;3(6):242–55. doi: 10.1007/s007690050234.CrossRefGoogle Scholar
  48. 48.
    Wang C, Yan Q, Liu H-B, Zhou X-H, Xiao S-J. Different EDC/NHS activation mechanisms between PAA and PMAA brushes and the following amidation reactions. Langmuir. 2011;27(19):12058–68. doi: 10.1021/la202267p.CrossRefGoogle Scholar
  49. 49.
    Sun L, Yu X, Sun M, Wang H, Xu S, Dixon JD, et al. Preparation of quantum dots encoded microspheres by electrospray for the detection of biomolecules. J Colloid Interface Sci. 2011;358(1):73–80. doi: 10.1016/j.jcis.2011.02.047.CrossRefGoogle Scholar
  50. 50.
    Guterres S, Beck R, Pohlmann A. Spray-drying technique to prepare innovative nanoparticulated formulations for drug administration: a brief overview. Braz J Phys. 2009;39(1A):205–9. doi: 10.1590/S0103-97332009000200013.CrossRefGoogle Scholar
  51. 51.
    Zhou Z, Lin M, Chen Z, Sun H, Zhang H, Sun H, et al. Simple synthesis of highly luminescent water-soluble CdTe quantum dots with controllable surface functionality. Chem Mater. 2011;23(21):4857–62. doi: 10.1021/cm202368w.CrossRefGoogle Scholar
  52. 52.
    Forry SP, Madonna MC, López-Pérez D, Lin NJ, Pasco MD. Automation of antimicrobial activity screening. AMB Express. 2016;6:1–10. doi: 10.1186/s13568-016-0191-2.CrossRefGoogle Scholar
  53. 53.
    Wagner M, McLauchlin J. Biology. In: Liu D, editor. Handbook of Listeria monocytogenes. Boca Raton: CRC Press; 2008.Google Scholar
  54. 54.
    Heigl N, Bachmann S, Petter CH, Marchetti-Deschmann M, Allmaier G, Bonn GK, et al. Near-infrared spectroscopic study on guest-host interactions among G0-G7 amine-terminated poly(amidoamine) dendrimers and porous silica materials for simultaneously determining the molecular weight and particle diameter by multivariate calibration techniques. Anal Chem. 2009;81(14):5655–62. doi: 10.1021/ac900375z.CrossRefGoogle Scholar
  55. 55.
    Tmejova K, Hynek D, Kopel P, Gumulec J, Krizkova S, Guran R, et al. Structural effects and nanoparticle size are essential for quantum dots-metallothionein complex formation. Colloids Surf B. 2015;134:262–72. doi: 10.1016/j.colsurfb.2015.06.045.CrossRefGoogle Scholar
  56. 56.
    Dey D, Goswami T. Optical biosensors: a revolution towards quantum nanoscale electronics device fabrication. J Biomed Biotechnol. 2011;2011:348218. doi: 10.1155/2011/348218.CrossRefGoogle Scholar
  57. 57.
    Pohlmann C, Humenik M, Sprinzl M. Detection of bacterial 16S rRNA using multivalent dendrimer-reporter enzyme conjugates. Biosens Bioelectron. 2009;24(11):3383–6. doi: 10.1016/j.bios.2009.04.017.CrossRefGoogle Scholar
  58. 58.
    Mandal TK, Parvin N. Rapid detection of bacteria by carbon quantum dots. J Biomed Nanotechnol. 2011;7(6):846–8.CrossRefGoogle Scholar
  59. 59.
    Dumas EM, Ozenne V, Mielke RE, Nadeau JL. Toxicity of CdTe quantum dots in bacterial strains. IEEE Trans Nanobioscience. 2009;8(1):58–64. doi: 10.1109/tnb.2009.2017313.CrossRefGoogle Scholar
  60. 60.
    Gonzalo S, Rodea-Palomares I, Leganes F, Garcia-Calvo E, Rosal R, Fernandez-Pinas F. First evidences of PAMAM dendrimer internalization in microorganisms of environmental relevance: a linkage with toxicity and oxidative stress. Nanotoxicology. 2015;9(6):706–18. doi: 10.3109/17435390.2014.969345.CrossRefGoogle Scholar
  61. 61.
    Jain K, Kesharwani P, Gupta U, Jain NK. Dendrimer toxicity: let's meet the challenge. Int J Pharm. 2010;394(1-2):122–42. doi: 10.1016/j.ijpharm.2010.04.027.CrossRefGoogle Scholar
  62. 62.
    Kloepfer JA, Mielke RE, Nadeau JL. Uptake of CdSe and CdSe/ZnS Quantum dots into bacteria via purine-dependent mechanisms. Appl Environ Microbiol. 2005;71(5):2548–57. doi: 10.1128/aem.71.5.2548-2557.2005.CrossRefGoogle Scholar
  63. 63.
    Mahendra S, Zhu H, Colvin VL, Alvarez PJ. Quantum dot weathering results in microbial toxicity. Environ Sci Technol. 2008;42(24):9424–30.CrossRefGoogle Scholar
  64. 64.
    Jin T, Sun D, Su JY, Zhang H, Sue HJ. Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella enteritidis, and Escherichia coli O157:H7. J Food Sci. 2009;74(1):M46–52. doi: 10.1111/j.1750-3841.2008.01013.x.CrossRefGoogle Scholar
  65. 65.
    Tyagi A, Rawat K, Verma A, Bohidar H. Mechanistic evaluation of the size dependent antimicrobial activity of water soluble QDs. Anal Methods. 2015;8(5):1060–8. doi: 10.1039/C5AY02742J.CrossRefGoogle Scholar
  66. 66.
    Lin S, Bhattacharya P, Rajapakse N, Brune D, Ke PC. Effects of quantum dots adsorption on algal photosynthesis. J Phys Chem C. 2009;113(25):10962–6. doi: 10.1021/jp904343s.CrossRefGoogle Scholar
  67. 67.
    Swift BJF, Baneyx F. Microbial uptake, toxicity, and fate of biofabricated ZnS:Mn nanocrystals. PLoS One. 2015;10(4):1–14. doi: 10.1371/journal.pone.0124916.CrossRefGoogle Scholar
  68. 68.
    Bierne H, Cossart P. Listeria monocytogenes surface proteins: from genome predictions to function. Microbiol Mol Biol Rev. 2007;71(2):377–97. doi: 10.1128/mmbr.00039-06.CrossRefGoogle Scholar
  69. 69.
    Hirschey MD, Han YJ, Stucky GD, Butler A. Imaging Escherichia coli using functionalized core/shell CdSe/CdS quantum dots. J Biol Inorg Chem. 2006;11(5):663–9. doi: 10.1007/s00775-006-0116-7.CrossRefGoogle Scholar
  70. 70.
    Pettipher GL, Mansell R, McKinnon CH, Cousins CM. Rapid membrane filtration-epifluorescent microscopy technique for direct enumeration of bacteria in raw milk. Appl Environ Microbiol. 1980;39(2):423–9.Google Scholar
  71. 71.
    Tortorello ML, Stewart DS. Antibody-direct epifluorescent filter technique for rapid, direct enumeration of Escherichia coli O157:H7 in beef. Appl Environ Microbiol. 1994;60(10):3553–9.Google Scholar
  72. 72.
    Zemser R, Martin S. Heat stability of virulence-associated enzymes from Listeria monocytogenes SLCC 5764. J Food Prot. 1998;61(7):899–902.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Wendy Donoso
    • 1
    • 2
  • Ricardo I. Castro
    • 3
  • Luis Guzmán
    • 4
  • Zoraya López-Cabaña
    • 5
  • Fabiane M. Nachtigall
    • 6
  • Leonardo S. Santos
    • 1
  1. 1.Laboratory of Asymmetric Synthesis, Institute of Chemistry and Natural ResourcesUniversity of TalcaTalcaChile
  2. 2.Department of Stomatology, Faculty of Health SciencesUniversity of TalcaTalcaChile
  3. 3.Instituto de Ciencias BiomédicasUniversidad Autónoma de ChileTalcaChile
  4. 4.Department of Clinical Biochemistry and Immunohematology, Faculty of Health SciencesUniversity of TalcaTalcaChile
  5. 5.Institute of Chemistry and Natural ResourcesUniversity of TalcaTalcaChile
  6. 6.Instituto de Innovación Basada en CienciasUniversity of TalcaTalcaChile

Personalised recommendations