Advertisement

Analytical and Bioanalytical Chemistry

, Volume 409, Issue 22, pp 5249–5258 | Cite as

Resolving the chemical structures of off-odorants and potentially harmful substances in toys—example of children’s swords

  • Philipp Denk
  • Cristina Velasco-Schön
  • Andrea BuettnerEmail author
Research Paper

Abstract

Most children’s toys on the market are primarily made out of plastic and other complex composite materials. Consumer complaints about offensive odors or irritating effects associated with toy products have increased in recent years. One example is the strongly perceivable negative odor reported for a particular series of toy swords. Characterizing the presence of contaminants, including those that have the potential to be deleterious to health, in such products is a significant analytical challenge due to the high baseline abundance of chemical constituents of the materials used in the products. In the present study, the nature of offensive odorants associated with toy sword products was examined by gas chromatography (GC). After initial sensory evaluations, the volatile compounds from the toy products were recovered using solvent extraction and solvent-assisted flavor evaporation. The extracts were analyzed using GC-olfactometry (GC-O) and two-dimensional GC-O coupled with mass spectrometry (GC-GC-MS/O). A total of 26 odor-active compounds, including aromatic hydrocarbons and phenols, were identified among numerous non-odorous volatile by-products. These substances also included polycyclic aromatic hydrocarbons, which were analyzed by GC-MS. Representative substances were naphthalene and 1,2-dihydronaphthalene that exhibited moldy, mothball-like odor impressions, and phenol derivatives with leather-like, phenolic, horse-stable-like smells. The odorants detected correlated with the assigned attributes from the sensory analyses. This study clearly shows that the detection and identification of such odorous contaminants can provide key indications of potentially harmful yet unknown substances in everyday products such as toys.

Graphical abstract

Keywords

Plastic Aroma extract dilution analysis (AEDA) Gas chromatography-olfactometry (GC-O) Retention index (RI) Two-dimensional gas chromatography-mass spectrometry (2D-GC-MS) 

Notes

Compliance with ethical standards

The study was conducted in agreement with the Declaration of Helsinki. The study (registration number 180_16B) was approved by the Ethical Committee of the Medical Faculty, Friedrich-Alexander Universität Erlangen-Nürnberg. Informed consent was obtained from all subjects participating in the study.

Funding sources

This study was funded by the Bavarian State Ministry of Environment and Consumer Safety (StMUV).

Competing financial interests statement

There are no competing financial or non-financial interests to declare.

References

  1. 1.
  2. 2.
    (2.ProdSV), Zweite Verordnung zum Produktsicherheitsgesetz (Verordnung über die Sicherheit von Spielzeug).Google Scholar
  3. 3.
    Directive 2009/48/EC of the European Parliament and of the Council of 18 June 2009 on the safety of toys.Google Scholar
  4. 4.
  5. 5.
    Burdack-Freitag A., Mayer F., Breuer K. Chemische Analytik von organischen Geruchsstoffen und sensorische Evaluation von Fehlgerüchen in technischen Materialien und Bauprodukten. 2011;71(10):433.Google Scholar
  6. 6.
  7. 7.
    German Federal Institute for Risk Assessment Stellungnahme Nr. 047/2008 des BfR vom 5. November 2008.Google Scholar
  8. 8.
    Husko Z. Screening handelsüblicher Bedarfsgegenstände und Spielwaren auf Kunststoff-Basis auf geruchsaktive Begleitsubstanzen mittels gaschromatographischer Methoden. 2012.Google Scholar
  9. 9.
    Kröner E-M. Identifikation von Fehlgeruch verursachenden Störsubstanzen in Kinderspielzeug. 2013.Google Scholar
  10. 10.
    Leichsenring C.A. Vergleichende human-sensorische und gaschromatographisch-olfaktorischer Bewertung von Kinderkunststoff-Produkten hinsichtlich geruchlicher Störeindrücke. 2015.Google Scholar
  11. 11.
    Engel W, Bahr W, Schieberle P. Solvent assisted flavour evaporation—a new and versatile technique for the careful and direct isolation of aroma compounds from complex food matrices. Eur Food Res Technol. 1999;209(3–4):237–41.CrossRefGoogle Scholar
  12. 12.
    Bemelmans J. Review of isolation and concentration techniques. Progress in flavour research. 1979. p. 79–98.Google Scholar
  13. 13.
    van den Dool H, Kratz P. A generalization of the retention index system including linear temperature programmed gas–liquid partition chromatography. J Chromatogr A. 1963;11:463–71. doi: 10.1016/S0021-9673(01)80947-X.CrossRefGoogle Scholar
  14. 14.
    Grosch W. Evaluation of the key odorants of foods by dilution experiments, aroma models and omission. Chem Senses. 2001;26(5):533–45.CrossRefGoogle Scholar
  15. 15.
    Guadagni D., Buttery RG., Okano S., Burr H. Additive effect of sub-threshold concentrations of some organic compounds associated with food aromas. 1963.Google Scholar
  16. 16.
    Laska M, Hudson R. A comparison of the detection thresholds of odour mixtures and their components. Chem Senses. 1991;16(6):651–62.CrossRefGoogle Scholar
  17. 17.
    Kalberlah F. Karzinogene, mutagene, reproduktionstoxische (CMR) und andere problematische Stoffe in Produkten-Identifikation relevanter Stoffe und Erzeugnisse, Überprüfung durch Messungen, Regelungsbedarf im Chemikalienrecht: Endbericht. FoBiG; 2010.Google Scholar
  18. 18.
    Parliament E, Union tCotE. Regulation (EC) No. 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No. 1907/2006. 2008;353.Google Scholar
  19. 19.
    Menges G., Haberstroh E., Michaeli W., Schmachtenberg E. Menges Werkstoffkunde Kunststoffe. Carl Hanser Verlag GmbH Co KG; 2014.Google Scholar
  20. 20.
    Lassen P., Hoffmann L., Thomsen M. PAHs in toys and childcare products. 2012.Google Scholar
  21. 21.
    Snedeker SM. Toxicants in food packaging and household plastics. Springer; 2014.Google Scholar
  22. 22.
    Screening of Plastic Toys for Chemical Composition and Hazards, https://www.nvwa.nl/txmpub/files/?p_file_id=11243. 2016.
  23. 23.
    Lester S.U., Schade M., Weigand C. Volatile vinyl: the new shower curtain’s chemical smell. Center for Health, Environment and Justice; 2008.Google Scholar
  24. 24.
    Tyapkova O, Czerny M, Buettner A. Characterisation of flavour compounds formed by γ-irradiation of polypropylene. Polym Degrad Stabil. 2009;94(5):757–69. doi: 10.1016/j.polymdegradstab.2009.02.006.CrossRefGoogle Scholar
  25. 25.
    Baur E., Brinkmann S., Osswald T.A., Rudolph N., Schmachtenberg E., Saechtling H. Saechtling Kunststoff Taschenbuch. Carl Hanser Verlag GmbH Co KG; 2013.Google Scholar
  26. 26.
    Mayer F., Breuer K. Material odor-odoractive compounds identified in different materials—the surprising similarities with certain foods, possible sources and hypotheses on their formation. 2006;16(5):373–382.Google Scholar
  27. 27.
    Svendsen N., Pedersen S.F., Hansen O.C., Pedersen E., Bernth N. Survey and release of chemical substances in “slimy” toys. 2005(67).Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Philipp Denk
    • 1
    • 2
  • Cristina Velasco-Schön
    • 3
  • Andrea Buettner
    • 1
    • 2
    Email author
  1. 1.Emil Fischer Center, Department of Chemistry and PharmacyFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  2. 2.Department of Sensory AnalyticsFraunhofer Institute for Process Engineering and PackagingFreisingGermany
  3. 3.Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit, Sachgebiet Bedarfsgegenstände (Bavarian Health and Food Safety Authority, Department of Articles of Daily Use)ErlangenGermany

Personalised recommendations