Analytical and Bioanalytical Chemistry

, Volume 409, Issue 23, pp 5463–5480 | Cite as

A fully automated simultaneous single-stage separation of Sr, Pb, and Nd using DGA Resin for the isotopic analysis of marine sediments

  • A. Retzmann
  • T. Zimmermann
  • D. Pröfrock
  • T. Prohaska
  • J. Irrgeher
Research Paper

Abstract

A novel, fast and reliable sample preparation procedure for the simultaneous separation of Sr, Pb, and Nd has been developed for subsequent isotope ratio analysis of sediment digests. The method applying a fully automated, low-pressure chromatographic system separates all three analytes in a single-stage extraction step using self-packed columns filled with DGA Resin. The fully automated set-up allows the unattended processing of three isotopic systems from one sediment digest every 2 h, offering high sample throughput of up to 12 samples per day and reducing substantially laboratory manpower as compared to conventional manual methods. The developed separation method was validated using the marine sediment GBW-07313 as matrix-matched certified reference material and combines quantitative recoveries (>90% for Sr, >93% for Pb, and >91% for Nd) with low procedural blank levels following the sample separation (0.07 μg L−1 Sr, 0.03 μg L−1 Pb, and 0.57 μg L−1 Nd). The average δ values for Sr, Pb, and Nd of the separated reference standards were within the certified ranges (δ (87Sr/86Sr)NIST SRM 987 of −0.05(28) ‰, δ(208Pb/206Pb)NIST SRM 981 of −0.21(14) ‰, and δ(143Nd/144Nd)JNdi-1 of 0.00(7) ‰). The DGA Resin proved to be reusable for the separation of >10 sediment digests with no significant carry-over or memory effects, as well as no significant on-column fractionation of Sr, Pb, and Nd isotope ratios. Additional spike experiments of NIST SRM 987 with Pb, NIST SRM 981 with Sr, and JNdi-1 with Ce revealed no significant impact on the measured isotopic ratios, caused by potential small analyte peak overlaps during the separation of Sr and Pb, as well as Ce and Nd.

Keywords

Isotopic analysis Automated sample matrix separation Sr Pb Nd DGA Resin MC ICP-MS 

Notes

Acknowledgements

The authors would like to acknowledge Paul Field together with Patrick Klemens from Elemental Scientific as well as Stephen Romaniello from the Arizona State University for their input related to the prepFAST-MC™ system and Steffen Happel (Triskem) for providing a first version of a self-packed column. We would like to thank the Geological Survey of Japan (Hikari Kamioka) for providing us with an aliquot of JNdi-1 (neodymium oxide) standard as well as Anna Reese (Helmholtz-Centre Geesthacht) and Tine Opper (VIRIS laboratory) for their support in the lab.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2017_468_MOESM1_ESM.pdf (18 kb)
ESM 1(PDF 17 kb)

References

  1. 1.
    DePaolo DJ. Neodymium isotope geochemistry. An introduction, vol 20. Minerals, rocks and mountains. Berlin: Springer; 1988. doi:10.1007/978-3-642-48916-7.CrossRefGoogle Scholar
  2. 2.
    Capo RC, Stewart BW, Chadwick OA. Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma. 1998;82:197–225.CrossRefGoogle Scholar
  3. 3.
    Faure G, Mensing TM. Isotopes: principles and applications. 3rd ed. Hoboken: Wiley; 2005.Google Scholar
  4. 4.
    Irrgeher J, Prohaska T. CHAPTER 6 instrumental isotopic fractionation. In: Sector field mass spectrometry for elemental and isotopic analysis. Cambridge: The Royal Society of Chemistry; 2015. p. 107–20. doi:10.1039/9781849735407-00107.Google Scholar
  5. 5.
    Meija J, Yang L, Mester Z, Sturgeon RE. Correction of instrumental mass discrimination for isotope ratio determination with multi-collector inductively coupled plasma mass spectrometry. In: Isotopic analysis. Wiley-VCH Verlag GmbH & Co. KGaA; 2012. pp 113–137. doi:10.1002/9783527650484.ch.5.
  6. 6.
    Woodhead J, Swearer S, Hergt J, Maas R. In situ Sr-isotope analysis of carbonates by LA-MC-ICP-MS: interference corrections, high spatial resolution and an example from otolith studies. J Anal At Spectrom. 2005;20(1):22. doi:10.1039/b412730g.CrossRefGoogle Scholar
  7. 7.
    Prohaska T. CHAPTER 7 interferences. In: Sector field mass spectrometry for elemental and isotopic analysis. Cambridge: The Royal Society of Chemistry; 2015. p. 121–5. doi:10.1039/9781849735407-00121.Google Scholar
  8. 8.
    Galler P, Limbeck A, Boulyga SF, Stingeder G, Hirata T, Prohaska T. Development of an on-line flow injection Sr/ matrix separation method for accurate, high-throughput determination of Sr isotope ratios by multiple collector-inductively coupled plasma-mass spectrometry. Anal Chem. 2007;79:5023–9.CrossRefGoogle Scholar
  9. 9.
    Irrgeher J, Prohaska T, Sturgeon RE, Mester Z, Yang L. Determination of strontium isotope amount ratios in biological tissues using MC-ICPMS. Anal Methods. 2013;5(7):1687. doi:10.1039/c3ay00028a.CrossRefGoogle Scholar
  10. 10.
    Nu Instruments. Application note AN22: capability in resolving anayte peaks from interferences for precise and accurate isotopic measurements Nu Plasma II - MULTI COLLECTOR ICP-MS. Wexham: Nu Instruments; 2016.Google Scholar
  11. 11.
    Thermo Scientific. Thermo Scientific Neptune Plus - Multicollector ICP-MS. Mass Spectrometry. Bremen: Thermo Scientific; 2016.Google Scholar
  12. 12.
    Irrgeher J, Galler P, Prohaska T. 87Sr/86Sr isotope ratio measurements by laser ablation multicollector inductively coupled plasma mass spectrometry: reconsidering matrix interferences in bioapatites and biogenic carbonates. Spectrochim Acta B. 2016;125:31–42. doi:10.1016/j.sab.2016.09.008.CrossRefGoogle Scholar
  13. 13.
    Hanousek O, Rottmann L, Prohaska T. CHAPTER 5 mass resolution. In: Sector field mass spectrometry for elemental and isotopic analysis. Cambridge: The Royal Society of Chemistry; 2015. p. 97–106. doi:10.1039/9781849735407-00097.Google Scholar
  14. 14.
    Moens LJ, Vanhaecke FF, Bandura DR, Baranov VI, Tanner SD. Elimination of isobaric interferences in ICP-MS, using ion–molecule reaction chemistry: Rb/Sr age determination of magmatic rocks, a case study. J Anal At Spectrom. 2001;16(9):991–4. doi:10.1039/b103707m.CrossRefGoogle Scholar
  15. 15.
    Bolea-Fernandez E, Balcaen L, Resano M, Vanhaecke F. Tandem ICP-mass spectrometry for Sr isotopic analysis without prior Rb/Sr separation. J Anal At Spectrom. 2016;31(1):303–10. doi:10.1039/c5ja00157a.CrossRefGoogle Scholar
  16. 16.
    Woods G. Lead isotope analysis: removal of 204Hg isobaric interference from 204Pb using ICP-QQQ in MS/MS mode. Application note. Stockport: Agilent Technologies; 2014.Google Scholar
  17. 17.
    De Muynck D, Huelga-Suarez G, Van Heghe L, Degryse P, Vanhaecke F. Systematic evaluation of a strontium-specific extraction chromatographic resin for obtaining a purified Sr fraction with quantitative recovery from complex and Ca-rich matrices. J Anal At Spectrom. 2009;24(11):1498. doi:10.1039/b908645e.CrossRefGoogle Scholar
  18. 18.
    Pin C, Gannoun A, Dupont A. Rapid, simultaneous separation of Sr, Pb, and Nd by extraction chromatography prior to isotope ratios determination by TIMS and MC-ICP-MS. J Anal At Spectrom. 2014;29(10):1858–70. doi:10.1039/c4ja00169a.CrossRefGoogle Scholar
  19. 19.
    Deniel C, Pin C. Single-stage method for the simultaneous isolation of lead and strontium from silicate samples for isotopic measurements. Anal Chim Acta. 2001;426(1):95–103. doi:10.1016/S0003-2670(00)01185-5.CrossRefGoogle Scholar
  20. 20.
    Míkova J, Denková P. Modified chromatographic separation scheme for Sr and Nd isotope analysis in geological silicate samples. J Geosci. 2007;52:221–6. doi:10.3190/jgeosci.015.Google Scholar
  21. 21.
    Horwitz EP, Chiarizia R, Dietz ML. A novel strontium-selective extraction chromatographic resin. Solvent Extr Ion Exc. 1992;10(2):313–36. doi:10.1080/07366299208918107.
  22. 22.
    Pin C, Briot D, Bassin C, Poitrasson F. Concomitant separation of strontium and samarium-neodymium for isotopic analysis of silicates samples, based on specific extraction chromatography. Anal Chim Acta. 1994;298:209–17.CrossRefGoogle Scholar
  23. 23.
    Smet I, De Muynck D, Vanhaecke F, Elburg M. From volcanic rock powder to Sr and Pb isotope ratios: a fit-for-purpose procedure for multi-collector ICP-mass spectrometric analysis. J Anal At Spectrom. 2010;25(7):1025–32. doi:10.1039/B926335G.CrossRefGoogle Scholar
  24. 24.
    Pourmand A, Prospero JM, Sharifi A. Geochemical fingerprinting of trans-Atlantic African dust based on radiogenic Sr-Nd-Hf isotopes and rare earth element anomalies. Geology. 2014;42(8):675.CrossRefGoogle Scholar
  25. 25.
    Jweda J, Bolge L, Class C, Goldstein SL. High precision Sr-Nd-Hf-Pb isotopic compositions of USGS reference material BCR-2. Geostand Geoanal Res. 2016;40(1):101–15. doi:10.1111/j.1751-908X.2015.00342.x.CrossRefGoogle Scholar
  26. 26.
    Li C-F, Wang X-C, Guo J-H, Chu Z-Y, Feng L-J. Rapid separation scheme of Sr, Nd, Pb, and Hf from a single rock digest using a tandem chromatography column prior to isotope ratio measurements by mass spectrometry. J Anal At Spectrom. 2016;31(5):1150–9. doi:10.1039/c5ja00477b.CrossRefGoogle Scholar
  27. 27.
    Latkoczy C, Prohaska T, Watkins M, Teschler-Nicola M, Stingeder G. Strontium isotope ratio determination in soil and bone samples after on-line matrix separation by coupling ion chromatography (HPIC) to an inductively coupled plasma sector field mass spectrometer (ICP-SFMS). J Anal At Spectrom. 2001;16(0):806–11. doi:10.1039/b102797m.CrossRefGoogle Scholar
  28. 28.
    Galler P, Limbeck A, Uveges M, Prohaska T. Automation and miniaturization of an on-line flow injection Sr/matrix separation method for accurate, high throughput determination of Sr isotope ratios by MC-ICP-MS. J Anal At Spectrom. 2008;23(10):1388. doi:10.1039/b803964j.CrossRefGoogle Scholar
  29. 29.
    García-Ruiz S, Moldovan M, García Alonso JI. Large volume injection in ion chromatography separation of rubidium and strontium for on-line inductively coupled plasma mass spectrometry determination of strontium isotope ratios. J Chromatogr A. 2007;1149:274–81. doi:10.1016/j.chroma.2007.03.048.CrossRefGoogle Scholar
  30. 30.
    Garcia-Ruiz S, Moldovan M, Garcia Alonso JI. Measurement of strontium isotope ratios by MC-ICP-MS after on-line Rb-Sr ion chromatography separation. J Anal At Spectrom. 2008;23(1):84–93. doi:10.1039/b708936h.CrossRefGoogle Scholar
  31. 31.
    Karasinski J, Bulska E, Wojciechowski M, Krata AA, Halicz L. On-line separation of strontium from a matrix and determination of the 87Sr/86Sr ratio by ion chromatography/multicollector-ICPMS. J Anal At Spectrom. 2016; doi:10.1039/C6JA00109B.
  32. 32.
    Halicz L, Lam JWH, McLaren JW. An on-line method for the determination of lead and lead isotope ratios in fresh and saline waters by inductively coupled plasma mass spectrometry. Spectrochim Acta B. 1994;49(7):637–47. doi:10.1016/0584-8547(94)80057-X.CrossRefGoogle Scholar
  33. 33.
    Zurbrick CM, Gallon C, Flegal AR. A new method for stable lead isotope extraction from seawater. Anal Chim Acta. 2013;800:29–35. doi:10.1016/j.aca.2013.09.002.CrossRefGoogle Scholar
  34. 34.
    Röllin S, Kopatjtic Z, Wernli B, Magyar B. Determination of lanthanides and actinides in uranium materials by high-performance liquid chromatography with inductively coupled plasma mass spectrometric detection. J Chromatogr A. 1996;739(1–2):139–49. doi:10.1016/0021-9673(96)00037-4.CrossRefGoogle Scholar
  35. 35.
    Günther-Leopold I, Wernli B, Kopajtic Z, Günther D. Measurement of isotope ratios on transient signals by MC-ICP–MS. Anal Bioanal Chem. 2004;378(2):241–9. doi:10.1007/s00216-003-2226-1.CrossRefGoogle Scholar
  36. 36.
    Günther-Leopold I, Kivel N, Kobler Waldis J, Wernli B. Characterization of nuclear fuels by ICP mass-spectrometric techniques. Anal Bioanal Chem. 2008;390(2):503–10. doi:10.1007/s00216-007-1644-x.CrossRefGoogle Scholar
  37. 37.
    Guéguen F, Isnard H, Nonell A, Vio L, Vercouter T, Chartier F. Neodymium isotope ratio measurements by LC-MC-ICPMS for nuclear applications: investigation of isotopic fractionation and mass bias correction. J Anal At Spectrom. 2015;30:443–52. doi:10.1039/c4ja00361f.CrossRefGoogle Scholar
  38. 38.
    Rodríguez-Castrillón JÁ, García-Ruiz S, Moldovan M, García Alonso JI. Multiple linear regression and on-line ion exchange chromatography for alternative Rb–Sr and Nd–Sm MC-ICP-MS isotopic measurements. J Anal At Spectrom. 2012;27(4):611. doi:10.1039/c2ja10274a.CrossRefGoogle Scholar
  39. 39.
    Romaniello SJ, Field MP, Smith HB, Gordon GW, Kim MH, Anbar AD. Fully automated chromatographic purification of Sr and Ca for isotopic analysis. J Anal At Spectrom. 2015;30(9):1906–12. doi:10.1039/c5ja00205b.CrossRefGoogle Scholar
  40. 40.
    Saji NS, Wielandt D, Paton C, Bizzarro M. Ultra-high-precision Nd-isotope measurements of geological materials by MC-ICPMS. J Anal At Spectrom. 2016;31(7):1490–504. doi:10.1039/C6JA00064A.CrossRefGoogle Scholar
  41. 41.
    Enge TG, Field MP, Jolley DF, Ecroyd H, Kim MH, Dosseto A. An automated chromatography procedure optimized for analysis of stable Cu isotopes from biological materials. J Anal At Spectrom. 2016; doi:10.1039/c6ja00120c.
  42. 42.
    Pin C, Bassin C. Evaluation of a strontium-specific extraction chromatographic method for isotopic analysis in geological materials. Anal Chim Acta. 1992;269(2):249–55. doi:10.1016/0003-2670(92)85409-Y.CrossRefGoogle Scholar
  43. 43.
    Pin C, Zalduegui JS. Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: application to isotopic analyses of silicate rocks. Anal Chim Acta. 1997;339(1):79–89. doi:10.1016/S0003-2670(96)00499-0.CrossRefGoogle Scholar
  44. 44.
    Ohno T, Hirata T. Determination of mass-dependent isotopic fractionation of cerium and neodymium in geochemical samples by MC-ICPMS. Anal Sci. 2013;29(1):47–53. doi:10.2116/analsci.29.47.CrossRefGoogle Scholar
  45. 45.
    Field P Elemental Scientific - Booth 918. In: AGU Fall Meeting, San Francisco, 3–7 December 2012; 2012.Google Scholar
  46. 46.
    Field P. prepFAST-MC™ - automating sample purification - MC-ICPMS. Omaha: Elemental Scientific; 2015.Google Scholar
  47. 47.
    Field P. prepFAST-MC: Mg, Sr and Ca isotopes. Omaha: Elemental Scientific; 2015.Google Scholar
  48. 48.
    Field P. prepFAST-MC : lead extraction for MC-ICP-MS. Omaha: Elemental Scientific; 2015.Google Scholar
  49. 49.
    Field P. prepFAST-MC: Fe, Cu, Zn and Cd isotopes. Omaha: Elemental Scientific; 2015.Google Scholar
  50. 50.
    Field P, Tevepaugh KN, Ticknor BW, Kim H, Bottorff SC, Hexel CR. Advances in nuclear forensics. Paper presented at the European Winter Conference on Plasma Spectrochemistry St. Anton, Austria; 2017.Google Scholar
  51. 51.
    Horwitz EP, McAlister DR, Bond AH, Barrans RE. Novel extraction chromatographic resins based on tetraalkyldiglycolamides: characterization and potential applications. Solvent Extr Ion Exch. 2005;23:319.CrossRefGoogle Scholar
  52. 52.
    Pourmand A, Dauphas N. Distribution coefficients of 60 elements on TODGA resin: Application to Ca, Lu, Hf, U and Th isotope geochemistry. Talanta. 2010;81:741–53. doi:10.1016/j.talanta.2010.01.008.CrossRefGoogle Scholar
  53. 53.
    Brand WA, Coplen TB, Vogl J, Rosner M, Prohaska T. Assessment of international reference materials for isotope-ratio analysis (IUPAC Technical Report). Pure Appl Chem. 2014;86(3):425–67. doi:10.1515/pac-2013-1023.CrossRefGoogle Scholar
  54. 54.
    Tanaka T, Togashi S, Kamioka H, Amakawa H, Kagami H, Hamamoto T, et al. JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chem Geol. 2000;168:279–81.CrossRefGoogle Scholar
  55. 55.
    Horsky M, Irrgeher J, Prohaska T. Evaluation strategies and uncertainty calculation of isotope amount ratios measured by MC ICP-MS on the example of Sr. Anal Bioanal Chem. 2015; doi:10.1007/s00216-015-9003-9.
  56. 56.
    Yang L, Peter C, Panne U, Sturgeon RE. Use of Zr for mass bias correction in strontium isotope ratio determinations using MC-ICP-MS. J Anal At Spectrom. 2008;23(9):1269–74. doi:10.1039/b803143f.CrossRefGoogle Scholar
  57. 57.
    Irrgeher J, Vogl J, Santner J, Prohaska T. CHAPTER 8 measurement strategies. In: Sector field mass spectrometry for elemental and isotopic analysis. Cambridge: The Royal Society of Chemistry; 2015. p. 126–51. doi:10.1039/9781849735407-00126.Google Scholar
  58. 58.
    Kramchaninov AY, Chernyshev IV, Shatagin KN. Isotope analysis of strontium by multicollector inductively-coupled plasma mass spectrometry: high-precision combined measurement of 88Sr/86Sr and 87Sr/86Sr isotope ratios. J Anal Chem. 2012;67(14):1084–92. doi:10.1134/s1061934812140067.CrossRefGoogle Scholar
  59. 59.
    Meija J, Coplen TB, Berglund M, Brand WA, De Bièvre P, Gröning M, et al. Isotopic compositions of the elements 2013 (IUPAC Technical Report). Pure Appl Chem. 2016;88:265–291. doi:10.1515/pac-2015-0503.
  60. 60.
    Meija J, Coplen TB, Berglund M, Brand WA, De Bièvre P, Gröning M, Holden NE, Irrgeher J, Loss RD, Walczyk T, Prohaska T Atomic weights of the elements 2013 (IUPAC Technical Report). Pure Appl Chem. 2016;88(3):293–306. doi:10.1515/pac-2015-0305
  61. 61.
    Wakaki S, Tanaka T. Stable isotope analysis of Nd by double spike thermal ionization mass spectrometry. Int J Mass Spectrom. 2012;323–324:45–54. doi:10.1016/j.ijms.2012.06.019.CrossRefGoogle Scholar
  62. 62.
    Dubois JC, Retali G, Cesario J. Isotopic analysis of rare earth elements by total vaporization of samples in thermal ionization mass spectrometry. Int J Mass Spectrom Ion Process. 1992;120(3):163–77. doi:10.1016/0168-1176(92)85046-3.CrossRefGoogle Scholar
  63. 63.
    Eichrom Technologies. DGA Resin technical info. 2016. http://www.eichrom.com/products/info/dga_resin.aspx. Accessed Feb 2016.

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • A. Retzmann
    • 1
  • T. Zimmermann
    • 2
    • 3
  • D. Pröfrock
    • 2
  • T. Prohaska
    • 1
  • J. Irrgeher
    • 2
  1. 1.Department of Chemistry, Division of Analytical Chemistry, VIRIS LaboratoryUniversity of Natural Resources and Life Sciences ViennaTullnAustria
  2. 2.Institute of Coastal Research, Marine Bioanalytical ChemistryHelmholtz-Centre GeesthachtGeesthachtGermany
  3. 3.Department of Chemistry, Inorganic and Applied ChemistryUniversity of HamburgHamburgGermany

Personalised recommendations