Analytical and Bioanalytical Chemistry

, Volume 409, Issue 21, pp 5043–5055 | Cite as

Effective combined water and sideband suppression for low-speed tissue and in vivo MAS NMR

  • Yalda Liaghati Mobarhan
  • Jochem Struppe
  • Blythe Fortier-McGill
  • André J. Simpson
Research Paper


High-resolution magic angle spinning (HR-MAS) NMR is a powerful technique that can provide metabolic profiles and structural constraints on intact biological and environmental samples such as cells, tissues and living organisms. However, centripetal force from fast spinning can lead to a loss of sample integrity. In analyses focusing on structural organization, metabolite compartmentalization or in vivo studies, it is critical to keep the sample intact. As such, there is growing interest in slow spinning studies that preserve sample longevity. In this study, for example, reducing the spinning rate from 2500 to 500 Hz during the analysis of a living freshwater shrimp increased the 100% survivability threshold from ~14 to 40 h. Unfortunately, reducing spinning rate decreases the intensity of the isotropic signals and increases both the intensity and number of spinning sidebands, which mask spectral information. Interestingly, water suppression approaches such as excitation sculpting and W5 WATERGATE, which are effective at higher spinning rates, fail at lower spinning rates (<2500 Hz) while simpler approaches such as presaturation are not able to effectively suppress water when the ratio of water to biomass is very high, as is the case in vivo. As such there is a considerable gap in NMR approaches which can be used to suppress water signals and sidebands in biological samples at lower spinning rates. This research presents simple but practically important sequences that combine PURGE water suppression with both phase-adjusted spinning sidebands and an analogue of TOSS termed TOSS.243. The result is simple and effective water and sideband suppression even in extremely dilute samples in pure water down to ~100 Hz spinning rate. The approach is introduced, described and applied to a range of samples including, ex vivo worm tissue, Daphnia magna (water fleas), and in vivo Hyalella azteca (shrimp).


HR-MAS Sideband suppression In vivo Water suppression 



A.J.S. thanks NSERC, (Strategic (STPGP 494273-16) and Discovery Programs (RGPIN-2014-05423), the Canadian Foundation for Innovation (CFI), and the Ministry of Research and Innovation (MRI) and Krembil Foundation for providing the funding. A.J.S. also thanks the Government of Ontario for an Early Researcher Award.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

216_2017_450_MOESM1_ESM.pdf (499 kb)
ESM 1 (PDF 498 kb)


  1. 1.
    Patel S, Ahmed S. Emerging field of metabolomics: big promise for cancer biomarker identification and drug discovery. J Pharm and Biomed Anal. 2015;107:63–74.CrossRefGoogle Scholar
  2. 2.
    Wu C, Kim HK, van Wezel GP, Choi YH. Metabolomics in the natural products field—a gateway to novel antibiotics. Drug Discov Today: Technologies. 2015;13:11–7.CrossRefGoogle Scholar
  3. 3.
    Clarke CJ, Haselden JN. Metabolic profiling as a tool for understanding mechanisms of toxicity. Toxicol Pathol. 2008;36(1):140–7.CrossRefGoogle Scholar
  4. 4.
    Nagato EG, D’eon JC, Lankadurai BP, Poirier DG, Reiner EJ, Simpson AJ, et al. 1H NMR-based metabolomics investigation of Daphnia magna responses to sub-lethal exposure to arsenic, copper and lithium. Chemosphere. 2013;93(2):331–7.CrossRefGoogle Scholar
  5. 5.
    Ekman D, Teng Q, Villeneuve D, Kahl M, Jensen K, Durhan E, et al. Profiling lipid metabolites yields unique information on sex- and time-dependent responses of fathead minnows (Pimephales promelas) exposed to 17α-ethynylestradiol. Metabolomics. 2009;5(1):22–32.CrossRefGoogle Scholar
  6. 6.
    Tjeerdema RS. Application of NMR-based techniques in aquatic toxicology: brief examples. Mar Pollut Bull. 2008;57(6–12):275–9.CrossRefGoogle Scholar
  7. 7.
    Soong R, Nagato E, Sutrisno A, Fortier-McGill B, Akhter M, Schmidt S, et al. In vivo NMR spectroscopy: toward real time monitoring of environmental stress. Magn Reson Chem. 2015;53(9):774–9.CrossRefGoogle Scholar
  8. 8.
    Simpson AJ, McNally DJ, Simpson MJ. NMR spectroscopy in environmental research: from molecular interactions to global processes. Prog Nucl Magn Reson Spectrosc. 2011;58(3–4):97–175.CrossRefGoogle Scholar
  9. 9.
    Adebodun F, Post JFM. Bulk magnetic susceptibility induced broadening in the 19F NMR of suspended leukemic cells. NMR Biomed. 1993;6(2):125–9.CrossRefGoogle Scholar
  10. 10.
    Cooke FJ, Blamire AM, Manners DN, Styles P, Rajagopalan B. Quantitative proton magnetic resonance spectroscopy of the cervical spinal cord. Magn Reson Med. 2004;51(6):1122–8.CrossRefGoogle Scholar
  11. 11.
    Millis KK, Maas WE, Cory DG, Singer S. Gradient, high-resolution, magic-angle spinning nuclear magnetic resonance spectroscopy of human adipocyte tissue. Magn Reson Med. 1997;38(3):399–403.CrossRefGoogle Scholar
  12. 12.
    Maas WE, Laukien FH, Cory DG. Gradient, high resolution, magic angle sample spinning NMR. J Am Chem Soc. 1996;118(51):13085–6.CrossRefGoogle Scholar
  13. 13.
    Klinowski J, Magic-angle-spinning NMR. Solid State Ionics. 1985;16:3–14.CrossRefGoogle Scholar
  14. 14.
    Courtier-Murias D, Farooq H, Masoom H, Botana A, Soong R, Longstaffe JG, et al. Comprehensive multiphase NMR spectroscopy: basic experimental approaches to differentiate phases in heterogeneous samples. J Magn Reson. 2012;217:61–76.CrossRefGoogle Scholar
  15. 15.
    Liaghati Mobarhan Y, Fortier-McGill B, Soong R, Maas WE, Fey M, Monette M, et al. Comprehensive multiphase NMR applied to a living organism. Chem Sci. 2016;7:4856–66.CrossRefGoogle Scholar
  16. 16.
    Aime S, Bruno E, Cabella C, Colombatto S, Digilio G, Mainero V. HR-MAS of cells: a “cellular water shift” due to water-protein interactions? Magn Reson Med. 2005;54(6):1547–52.CrossRefGoogle Scholar
  17. 17.
    Taylor JL, Wu C-L, Cory D, Gonzalez RG, Bielecki A, Cheng LL. High-resolution magic angle spinning proton NMR analysis of human prostate tissue with slow spinning rates. Magn Reson Med. 2003;50(3):627–32.CrossRefGoogle Scholar
  18. 18.
    Weybright P, Millis K, Campbell N, Cory DG, Singer S. Gradient, high-resolution, magic angle spinning 1H nuclear magnetic resonance spectroscopy of intact cells. Magn Reson Med. 1998;39(3):337–45.CrossRefGoogle Scholar
  19. 19.
    Bunescu A, Garric J, Vollat B, Canet-Soulas E, Graveron-Demilly D, Fauvelle F. In vivo proton HR-MAS NMR metabolic profile of the freshwater cladoceran Daphnia magna. Mol BioSyst. 2010;6(1):121–5.CrossRefGoogle Scholar
  20. 20.
    Wind RA, Hu JZ, Rommereim DN. High-resolution 1H NMR spectroscopy in organs and tissues using slow magic angle spinning. Magn Reson Med. 2001;46(2):213–8.CrossRefGoogle Scholar
  21. 21.
    Wind RA, Hu JZ, Rommereim DN. High-resolution 1H NMR spectroscopy in a live mouse subjected to 1.5 Hz magic angle spinning. Magn Reson Med. 2003;50(6):1113–9.CrossRefGoogle Scholar
  22. 22.
    Li W. Multidimensional HRMAS NMR: a platform for in vivo studies using intact bacterial cells. Analyst. 2006;131(7):777–81.CrossRefGoogle Scholar
  23. 23.
    Righi V, Apidianakis Y, Mintzopoulos D, Astrakas L, Rahme LG, Tzika AA. In vivo high-resolution magic angle spinning magnetic resonance spectroscopy of Drosophila melanogaster at 14.1 T shows trauma in aging and in innate immune-deficiency is linked to reduced insulin signaling. Int J Mol Med. 2010;26:175–84.Google Scholar
  24. 24.
    Bon D, Gilard V, Massou S, Pérès G, Malet-Martino M, Martino R, et al. In vivo 31P and 1H HR-MAS NMR spectroscopy analysis of the unstarved Aporrectodea caliginosa (Lumbricidae). Biol Fertil Soils. 2006;43(2):191–8.CrossRefGoogle Scholar
  25. 25.
    Griffin JL, Salek RM. 1H MAS NMR spectroscopy of tissues. In: Lindon JC, editor. Encyclopedia of spectroscopy and spectrometry. Second ed. Oxford: Academic Press; 2010. p. 925–30.CrossRefGoogle Scholar
  26. 26.
    Morvan D, Demidem A, Papon J, De Latour M, Madelmont JC. Melanoma tumors acquire a new phospholipid metabolism phenotype under cystemustine as revealed by high-resolution magic angle spinning proton nuclear magnetic resonance spectroscopy of intact tumor samples. Cancer Res. 2002;62(6):1890–7.Google Scholar
  27. 27.
    Chen J-H, Enloe BM, Fletcher CD, Cory DG, Singer S. Biochemical analysis using high-resolution magic angle spinning NMR spectroscopy distinguishes lipoma-like well-differentiated liposarcoma from normal fat. J Am Chem Soc. 2001;123(37):9200–1.CrossRefGoogle Scholar
  28. 28.
    Tzika AA, Cheng LL, Goumnerova L, Madsen JR, Zurakowski D, Astrakas LG, et al. Biochemical characterization of pediatric brain tumors by using in vivo and ex vivo magnetic resonance spectroscopy. J Neurosurgery. 2002;96(6):1023–31.CrossRefGoogle Scholar
  29. 29.
    Simpson AJ, Brown SA. PURGE NMR: effective and easy solvent suppression. J Magn Reson. 2005;175(2):340–6.CrossRefGoogle Scholar
  30. 30.
    Wind RA, Hu JZ. Magnetic susceptibility effects in nuclear magnetic resonance spectroscopy of biological objects. S.G. Pandalai; Transworld Research Network, Trivandrum, India. 2003.Google Scholar
  31. 31.
    Hu JZ, Wind RA, McLean J, Gerby YA, Resch CT, Fredrickson JK. High resolution 1H NMR spectroscopy of metabolically active microorganisms using non-destructive magic angle spinning. Spectroscopy. 2004;19(12):98–103.Google Scholar
  32. 32.
    Beckonert O, Coen M, Keun HC, Wang Y, Ebbels TMD, Holmes E, et al. High-resolution magic-angle-spinning NMR spectroscopy for metabolic profiling of intact tissues. Nat Protoc. 2010;5(6):1019–32.CrossRefGoogle Scholar
  33. 33.
    Waters NJ, Garrod S, Farrant RD, Haselden JN, Connor SC, Connelly J, et al. High-resolution magic angle spinning 1H NMR spectroscopy of intact liver and kidney: optimization of sample preparation procedures and biochemical stability of tissue during spectral acquisition. Anal Biochem. 2000;282(1):16–23.CrossRefGoogle Scholar
  34. 34.
    Renault M, Shintu L, Piotto M, Caldarelli S. Slow-spinning low-sideband HR-MAS NMR spectroscopy: delicate analysis of biological samples. Sci Rep. 2013;3:3349.CrossRefGoogle Scholar
  35. 35.
    Wong A, Boutin C, Aguiar PM. (1)H high resolution magic-angle coil spinning (HR-MACS) μNMR metabolic profiling of whole Saccharomyces cervisiae cells: a demonstrative study. Front Chem. 2014;2:38.Google Scholar
  36. 36.
    Wong A, Li X, Molin L, Solari F, Elena-Herrmann B, Sakellariou D. μHigh resolution-magic-angle spinning NMR spectroscopy for metabolic phenotyping of Caenorhabditis elegans. Anal Chem. 2014;86(12):6064–70.CrossRefGoogle Scholar
  37. 37.
    André M, Dumez J-N, Rezig L, Shintu L, Piotto M, Caldarelli S. Complete protocol for slow-spinning high-resolution magic-angle spinning NMR analysis of fragile tissues. Anal Chem. 2014;86(21):10749–54.CrossRefGoogle Scholar
  38. 38.
    Elbayed K, Berl V, Debeuckelaere C, Moussallieh F-M, Piotto M, Namer I-J, et al. HR-MAS NMR spectroscopy of reconstructed human epidermis: potential for the in situ investigation of the chemical interactions between skin allergens and nucleophilic amino acids. Chem Res Toxicol. 2013;26(1):136–45.CrossRefGoogle Scholar
  39. 39.
    Biological test method: test for survival and growth in sediment and water using the freshwater amphipod Hyalella azteca Environment Canada (EC)2013 January 2013.Google Scholar
  40. 40.
    Yuk J, Simpson MJ, Simpson AJ. 1-D and 2-D NMR-based metabolomics of earthworms exposed to endosulfan and endosulfan sulfate in soil. Environ Pollut. 2013;175:35–44.CrossRefGoogle Scholar
  41. 41.
    Brown SAE, Simpson AJ, Simpson MJ. Evaluation of sample preparation methods for nuclear magnetic resonance metabolic profiling studies with Eisenia fetida. Environ Toxicol Chem. 2008;27(4):828–36.CrossRefGoogle Scholar
  42. 42.
    Antzutkin ON. Sideband manipulation in magic-angle-spinning nuclear magnetic resonance. Prog Nucl Magn Reson Spectrosc. 1999;35(3):203–66.CrossRefGoogle Scholar
  43. 43.
    Wind RA, Hu JZ. In vivo and ex vivo high-resolution 1H NMR in biological systems using low-speed magic angle spinning. Prog Nucl Magn Reson Spectrosc. 2006;49(3–4):207–59.CrossRefGoogle Scholar
  44. 44.
    Antzutkin ON, Shekar SC, Levitt MH. Two-dimensional sideband separation in magic-angle-spinning NMR. J Magn Reson, Series A. 1995;115(1):7–19.CrossRefGoogle Scholar
  45. 45.
    Stoughton SJ, Liber K, Culp J, Cessna A. Acute and chronic toxicity of imidacloprid to the aquatic invertebrates Chironomus tentans and Hyalella azteca under constant- and pulse-exposure conditions. Arch Environ Contam Toxicol. 2008;54(4):662–73.CrossRefGoogle Scholar
  46. 46.
    LeBlanc GA. Acute toxicity of priority pollutants to water flea (Daphnia magna). Bull Environ Contam Toxicol. 1980;24(1):684–91.CrossRefGoogle Scholar
  47. 47.
    Kushner DJ, Baker A, Dunstall TG. Pharmacological uses and perspectives of heavy water and deuterated compounds. Can J Physiol Pharmacol. 1999;77(2):79–88.CrossRefGoogle Scholar
  48. 48.
    Lam B, Simpson AJ. Direct 1H NMR spectroscopy of dissolved organic matter in natural waters. Analyst. 2008;133(2):263–9.CrossRefGoogle Scholar
  49. 49.
    Hwang TL, Shaka AJ. Water suppression that works. Excitation sculpting using arbitrary wave-forms and pulsed-field gradients. J Magn Reson, Series A. 1995;112(2):275–9.CrossRefGoogle Scholar
  50. 50.
    Shirzadi A, Simpson MJ, Kumar R, Baer AJ, Xu Y, Simpson AJ. Molecular interactions of pesticides at the soil–water interface. Environ Sci Technol. 2008;42(15):5514–20.CrossRefGoogle Scholar
  51. 51.
    Dixon WT, Schaefer J, Sefcik MD, Stejskal EO, McKay RA. Quantitative chemical composition of materials such as humic soils, lignins, and coals by high-resolution carbon-13 NMR. J Magn Reson (1969). 1981;45(1):173–6.CrossRefGoogle Scholar
  52. 52.
    Dixon WT, Schaefer J, Sefcik MD, Stejskal EO, McKay RA. Total suppression of sidebands in CPMAS C-13 NMR. J Magn Reson (1969). 1982;49(2):341–5.CrossRefGoogle Scholar
  53. 53.
    Dixon WT. Spinning-sideband-free and spinning-sideband-only NMR spectra in spinning samples. J Chem Phys. 1982;77(4):1800–9.CrossRefGoogle Scholar
  54. 54.
    Antzutkin ON, Levitt MH. Centerband phase shift in the toss spectra of a magic-angle-spinning single crystal. J Magn Reson, Series A. 1996;118(2):295–8.CrossRefGoogle Scholar
  55. 55.
    Song Z, Antzutkin ON, Feng X, Levitt MH. Sideband suppression in magic-angle-spinning NMR by a sequence of 5 π pulses. Solid State Nucl Magn Reson. 1993;2(3):143–6.CrossRefGoogle Scholar
  56. 56.
    Wang F, Goulet RR, Chapman PM. Testing sediment biological effects with the freshwater amphipod Hyalella azteca: the gap between laboratory and nature. Chemosphere. 2004;57(11):1713–24.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Yalda Liaghati Mobarhan
    • 1
  • Jochem Struppe
    • 2
  • Blythe Fortier-McGill
    • 1
  • André J. Simpson
    • 1
  1. 1.Environmental NMR CenterUniversity of Toronto ScarboroughTorontoCanada
  2. 2.Bruker BioSpin CorpBillericaUSA

Personalised recommendations