Analytical and Bioanalytical Chemistry

, Volume 409, Issue 20, pp 4893–4903 | Cite as

In situ monitoring of molecular changes during cell differentiation processes in marine macroalgae through mass spectrometric imaging

  • Ralf W. Kessler
  • Anna C. CreceliusEmail author
  • Ulrich S. Schubert
  • Thomas WichardEmail author
Research Paper


Matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI) was employed to discriminate between cell differentiation processes in macroalgae. One of the key developmental processes in the algal life cycle is the production of germ cells (gametes and zoids). The gametogenesis of the marine green macroalga Ulva mutabilis (Chlorophyta) was monitored by metabolomic snapshots of the surface, when blade cells differentiate synchronously into gametangia and giving rise to gametes. To establish MSI for macroalgae, dimethylsulfoniopropionate (DMSP), a known algal osmolyte, was determined. MSI of the surface of U. mutabilis followed by chemometric data analysis revealed dynamic metabolomic changes during cell differentiation. DMSP and a total of 55 specific molecular biomarkers, which could be assigned to important stages of the gametogenesis, were detected. Our research contributes to the understanding of molecular mechanisms underlying macroalgal cell differentiation.

Graphical abstract

Molecular changes during cell differentiation of the marine macroalga Ulva were visualized by matrix assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI)


Ulva MALDI-MSI AP-MALDI Biomarkers Dimethylsulfoniopropionate (DMSP) 



The authors thank Dr. Michael Becker (Bruker Daltonik) and Prof. Dr. Georg Pohnert (University Jena) for useful discussions and the EMZ Jena for the scanning electron microscopy investigations. Financial support from the Deutsche Forschungsgemeinschaft (DFG) SFB 1127 ChemBioSys (R.K., T.W., U.S.S.) and from the Deutsche Bundesstiftung Umwelt (R.K.) is acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2017_430_MOESM1_ESM.pdf (397 kb)
ESM 1 (PDF 397 kb)


  1. 1.
    Fletcher RL. The occurence of green tides—a review. In: Schramm W, Nienhuis PH, editors. Marine benthic vegetation. New York: Springer; 1996.Google Scholar
  2. 2.
    Smetacek V, Zingone A. Green and golden seaweed tides on the rise. Nature. 2013;504:84–8.CrossRefGoogle Scholar
  3. 3.
    Nilsen G, Nordby Ø. Sporulation-inhibiting substance from vegetative thalli of green alga Ulva mutabilis. Føyn Planta. 1975;125:127–39.Google Scholar
  4. 4.
    Stratmann J, Paputsoglu G, Oertel W. Differentiation of Ulva mutabilis (Chlorophyta) gametangia and gamete release are controlled by extracellular inhibitors. J Phycol. 1996;32:1009–21.CrossRefGoogle Scholar
  5. 5.
    Gao S, Chen X, Yi Q, Wang G, Pan G, Lin A, et al. A strategy for the proliferation of Ulva prolifera, main causative species of green tides, with formation of sporangia by fragmentation. PLoS One. 2010;5:e8571.Google Scholar
  6. 6.
    Nordby Ø. Optimal conditions for meiotic spore formation in Ulva mutabilis Føyn. Bot mar. 1977;20:19–28.Google Scholar
  7. 7.
    Domozych DS, Domozych CE. Multicellularity in green algae: upsizing in a walled complex. Front Plant Sci. 2014;5:649.CrossRefGoogle Scholar
  8. 8.
    Wichard T, Charrier B, Mineur F, Bothwell JH, De Clerck O, Coates JC. The green seaweed Ulva: a model system to study morphogenesis. Front Plant Sci. 2015;6:72.Google Scholar
  9. 9.
    Coneva V, Chitwood DH. Plant architecture without multicellularity: quandaries over patterning and the soma-germline divide in siphonous algae. Front Plant Sci. 2015;6:287.CrossRefGoogle Scholar
  10. 10.
    Coates J, Umm-E-Aiman, Charrier B. Understanding “green” multicellularity: do seaweeds hold the key? Front Plant Sci. 2015;5:737.CrossRefGoogle Scholar
  11. 11.
    Liu X, Bogaert K, Engelen AH, Leliaert F, Roleda MY, De Clerck O. Seaweed reproductive biology: environmental and genetic controls. Bot mar. 2017;60:89–109.CrossRefGoogle Scholar
  12. 12.
    Cole LM, Clench MR. Mass spectrometry imaging for the proteomic study of clinical tissue. PROTEOMICS – Clin Appl. 2015;9:335–41.CrossRefGoogle Scholar
  13. 13.
    Dong Y, Li B, Malitsky S, Rogachev I, Aharoni A, Kaftan F, et al. Sample preparation for mass spectrometry imaging of plant tissues: a review. Front Plant Sci. 2016;7:60.Google Scholar
  14. 14.
    Spengler B. Mass spectrometry imaging of biomolecular information. Anal Chem. 2015;87:64–82.CrossRefGoogle Scholar
  15. 15.
    Sturtevant D, Lee Y-J, Chapman KD. Matrix assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) for direct visualization of plant metabolites in situ. Curr Opin Biotech. 2016;37:53–60.CrossRefGoogle Scholar
  16. 16.
    Yoshimura Y, Goto-Inoue N, Moriyama T, Zaima N. Significant advancement of mass spectrometry imaging for food chemistry. Food Chem. 2016;210:200–11.CrossRefGoogle Scholar
  17. 17.
    Crecelius AC, Schubert US, von Eggeling F. MALDI mass spectrometric imaging meets “omics”: recent advances in the fruitful marriage. Analyst. 2015;140:5806–20.CrossRefGoogle Scholar
  18. 18.
    Boughton BA, Thinagaran D, Sarabia D, Bacic A. U. R. Mass spectrometry imaging for plant biology: a review. Phytochem rev. 2016;15:445–88.CrossRefGoogle Scholar
  19. 19.
    Seeley EH, Caprioli RM. Molecular imaging of proteins in tissues by mass spectrometry. Proc Natl Acad Sci. 2008;105:18126–31.CrossRefGoogle Scholar
  20. 20.
    Palmer A, Trede D, Alexandrov T. Where imaging mass spectrometry stands: here are the numbers. Metabolomics. 2016;12:107.CrossRefGoogle Scholar
  21. 21.
    Løvlie A. Genetic control of division rate and morphogenesis in Ulva mutabilis Føyn. C R Trav lab Carlsberg. 1964;34:77–168.Google Scholar
  22. 22.
    Spoerner M, Wichard T, Bachhuber T, Stratmann J, Oertel W. Growth and thallus morphogenesis of Ulva mutabilis (Chlorophyta) depends on a combination of two bacterial species excreting regulatory factors. J Phycol. 2012;48:1433–47.CrossRefGoogle Scholar
  23. 23.
    Alsufyani T, Weiss A, Wichard T. Time course exo-metabolomic profiling in the green marine macroalga Ulva (Chlorophyta) for identification of growth phase-dependent biomarkers. Marine Drugs. 2017;15:14.CrossRefGoogle Scholar
  24. 24.
    Wichard T. Exploring bacteria-induced growth and morphogenesis in the green macroalga order Ulvales (Chlorophyta). Front Plant Sci. 2015;6:86.Google Scholar
  25. 25.
    Wichard T, Oertel W. Gametogenesis and gamete release of Ulva mutabilis and Ulva lactuca (Chlorophyta): regulatory effects and chemical characterization of the “swarming inhibitor”. J Phycol. 2010;46:248–59.CrossRefGoogle Scholar
  26. 26.
    Vesty EF, Kessler RW, Wichard T, Coates JC. Regulation of gametogenesis and zoosporogenesis in Ulva linza (Chlorophyta): comparison with Ulva mutabilis and potential for laboratory culture. Front Plant Sci. 2015;6:15.CrossRefGoogle Scholar
  27. 27.
    Løvlie A, Bråten T. On the division of cytoplasm and chloroplast in the multicellular green alga Ulva mutabilis Føyn. Exp Cell res. 1968;51:211–20.CrossRefGoogle Scholar
  28. 28.
    Katsaros C, Weiss A, Llangos I, Theodorou I, Wichard T. Cell structure and microtubule organisation during gametogenesis of Ulva mutabilis Foyn (Chlorophyta). Bot mar. 2017;60:123–35.CrossRefGoogle Scholar
  29. 29.
    Murray KK, Seneviratne CA, Ghorai S. High resolution laser mass spectrometry bioimaging. Methods. 2016.Google Scholar
  30. 30.
    Bodzon-Kulakowska A, Suder P. Imaging mass spectrometry: instrumentation, applications, and combination with other visualization techniques. Mass Spectrom rev. 2016;35:147–69.CrossRefGoogle Scholar
  31. 31.
    Andras TD, Alexander TS, Gahlena A, Parry RM, Fernandez FM, Kubanek J, et al. Seaweed allelopathy against coral: surface distribution of a seaweed secondary metabolite by imaging mass spectrometry. J Chem Ecol. 2012;38:1203–14.Google Scholar
  32. 32.
    Slaveykova VI, Guignard C, Eybe T, Migeon H-N, Hoffmann L. Dynamic NanoSIMS ion imaging of unicellular freshwater algae exposed to copper. Anal Bioanal Chem. 2009;393:583–9.CrossRefGoogle Scholar
  33. 33.
    Steinke M, Daniel C, Kirst GO. DMSP Lyase in marine macro- and microalgae. In: Kiene RP, Visscher PT, Keller MD, Kirst GO, editors. Biological and environmental chemistry of DMSP and related sulfonium compounds. Boston: Springer US; 1996. p. 317–24. doi: 10.1007/978-1-4613-0377-0_27.CrossRefGoogle Scholar
  34. 34.
    Kerrison P, Suggett DJ, Hepburn LJ, Steinke M. Effect of elevated pCO2 on the production of dimethylsulphoniopropionate (DMSP) and dimethylsulphide (DMS) in two species of Ulva (Chlorophyceae). Biogeochemistry. 2012;110:5–16.CrossRefGoogle Scholar
  35. 35.
    Grueneberg J, Engelen AH, Costa R, Wichard T. Macroalgal morphogenesis induced by waterborne compounds and bacteria in coastal seawater. PLoS One. 2016;11:e0146307.CrossRefGoogle Scholar
  36. 36.
    Gebser B, Pohnert G. Synchronized regulation of different zwitterionic metabolites in the osmoadaption of phytoplankton. Mar Drugs. 2013;11:2168.CrossRefGoogle Scholar
  37. 37.
    FlexImaging 3.0 Usuer Manual (2011). In Brucker. pp 216–217.Google Scholar
  38. 38.
    Strohalm M, Kavan D, Novák P, Volný M, Havlíček V. mMass 3: a cross-platform software environment for precise analysis of mass spectrometric data. Anal Chem. 2010;82:4648–51.CrossRefGoogle Scholar
  39. 39.
    Anderson MJ, Willis TJ. Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology. 2003;84:511–25.CrossRefGoogle Scholar
  40. 40.
    Della Corte A, Chitarrini G, Di Gangi IM, Masuero D, Soini E, Mattivi F, et al. A rapid LC–MS/MS method for quantitative profiling of fatty acids, sterols, glycerolipids, glycerophospholipids and sphingolipids in grapes. Talanta. 2015;140:52–61.Google Scholar
  41. 41.
    Weckwerth W, Wenzel K, Fiehn O. Process for the integrated extraction, identification and quantification of metabolites, proteins and RNA to reveal their co-regulation in biochemical networks. Proteomics. 2004;4:78–83.CrossRefGoogle Scholar
  42. 42.
    Kettle AJ, Andreae MO. Flux of dimethylsulfide from the oceans: a comparison of updated data sets and flux models. J Geophys res-Atmos. 2000;105:26793–808.CrossRefGoogle Scholar
  43. 43.
    Karsten U, Wiencke C, Kirst GO. Dimethylsulfoniumpropionate (DMSP) accumulation in green macroalgae from polar to temperate regions: interactive effects of light versus salinity and light versus temperature. Polar Biol. 1992;12:603–7.CrossRefGoogle Scholar
  44. 44.
    Van Alstyne KL. The distribution of DMSP in green macroalgae from northern New Zealand, eastern Australia and southern Tasmania. J mar Biol Assoc U K. 2008;88:799–805.Google Scholar
  45. 45.
    Van Alstyne KL, Wolfe GV, Freidenburg TL, Neill A, Hicken C. Activated defense systems in marine macroalgae: evidence for an ecological role for DMSP cleavage. Mar Ecol Prog Ser. 2001;213:53–65.CrossRefGoogle Scholar
  46. 46.
    Spielmeyer A, Gebser B, Pohnert G. Investigations of the uptake of dimethylsulfoniopropionate by phytoplankton. Chembiochem. 2011;12:2276–9.CrossRefGoogle Scholar
  47. 47.
    Porta T, Lesur A, Varesio E, Hopfgartner G. Quantification in MALDI-MS imaging: what can we learn from MALDI-selected reaction monitoring and what can we expect for imaging? Anal Bioanal Chem. 2014;407:2177–87.CrossRefGoogle Scholar
  48. 48.
    Shroff R, Schramm K, Jeschke V, Nemes P, Vertes A, Gershenzon J, et al. Quantification of plant surface metabolites by matrix-assisted laser desorption-ionization mass spectrometry imaging: glucosinolates on Arabidopsis thaliana leaves. Plant J. 2015;81:961–72.Google Scholar
  49. 49.
    Norris JL, Cornett DS, Mobley JA, Andersson M, Seeley EH, Chaurand P, et al. Processing MALDI mass spectra to improve mass spectral direct tissue analysis. Int J Mass Spectrom. 2007;260:212–21.Google Scholar
  50. 50.
    Spielmeyer A, Gebser B, Pohnert G. Dimethylsulfide sources from microalgae: improvement and application of a derivatization-based method for the determination of dimethylsulfoniopropionate and other zwitterionic osmolytes in phytoplankton. Mar Chem. 2011;124:48–56.CrossRefGoogle Scholar
  51. 51.
    Spielmeyer A, Pohnert G. Direct quantification of dimethylsulfoniopropionate (DMSP) with hydrophilic interaction liquid chromatography/mass spectrometry. J Chromatogr B. 2010;878:3238–42.CrossRefGoogle Scholar
  52. 52.
    Li C, Hill RW, Jones AD. Determination of betaine metabolites and dimethylsulfoniopropionate in coral tissues using liquid chromatography-time-of-flight mass spectrometry and stable isotope-labeled internal standards. J Chromatogr B. 2010;878:1809–16.CrossRefGoogle Scholar
  53. 53.
    Hoxmark RC, Nordby Ø. Haploid meiosis as a regular phenomenon in life cycle of Ulva mutabilis. Hereditas. 1974;76:239–49.CrossRefGoogle Scholar
  54. 54.
    van den Berg RA, Hoefsloot HCJ, Westerhuis JA, Smilde AK, van der Werf MJ. Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics. 2006;7:15.CrossRefGoogle Scholar
  55. 55.
    Saint-Marcoux D, Billoud B, Langdale JA, Charrier B. Laser capture microdissection in Ectocarpus siliculosus: the pathway to cell-specific transcriptomics in brown algae. Front Plant Sci. 2015;6:54.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Institute for Inorganic and Analytical Chemistry (IAAC)Friedrich Schiller University Jena (FSU Jena)JenaGermany
  2. 2.Institute of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University Jena (FSU Jena)JenaGermany
  3. 3.Jena Center for Soft Matter (JCSM)Friedrich Schiller University Jena (FSU Jena)JenaGermany

Personalised recommendations