Analytical and Bioanalytical Chemistry

, Volume 409, Issue 20, pp 4787–4799 | Cite as

Simultaneous determination of pyrethroids and pyrethrins by dispersive liquid-liquid microextraction and liquid chromatography triple quadrupole mass spectrometry in environmental samples

  • Alexander Ccanccapa-Cartagena
  • Ana Masiá
  • Yolanda Picó
Research Paper


A simple and environmentally friendly dispersive liquid-liquid microextraction (DLLME) method coupled with electrospray ionization liquid chromatography triple quadrupole mass spectrometry (LC-QqQ-MS/MS) was developed for the simultaneous determination of 17 synthetic and natural pyrethroids. A comparison of solid-phase extraction (SPE) versus DLLME for water samples and only “dilute and shoot” versus the additional extract cleanup by DLLME for sediment samples is reported. Chloroform was the extracting solvent in the DLLME technique for both water and sediment samples. Ultrasonic energy was applied to fully extract the analytes into fine droplets, providing high recoveries in short times. Method detection limits (MDLs) ranged from 0.12 to 0.62 ng L−1 and recoveries from 70 to 119% with RSD values 2–15% (n = 5) for water samples. In sediment samples, MDLs ranged from 0.50 to 2.50 ng g−1 and recoveries from 71 to 112% with RSDs 2–16% (n = 5). The proposed method showed a good linearity within the range of 10–500 ng mL−1, with coefficients of determination (R 2) higher than 0.99. Matrix effects were observed for most compounds in water and sediment (ME% < −10%). The proposed methodology was applied for the analysis of water and sediment samples from Albufera wetland and Turia River. Acrinathrin (48 ng g−1) and etofenprox (16 ng g−1) were detected in sediment samples.

Graphical abstract

Pyrethrins and pyrethroid determination in water and sediments by DLLME and LC-MS/MS.


Liquid chromatography Triple quadrupole mass spectrometry Dispersive liquid-liquid microextraction Pyrethroids and pyrethrins Water Sediment 



This work has been supported by the Spanish Ministry of Economy and Competitiveness through the project GCL2015-64454-C2-1-R (ECO2risk-dds). A. Ccanccapa gratefully acknowledges the Conselleria D’Educació, Cultura i Sport de la Generalitat Valenciana for the financial support through “Santiago Grisolía” Scholarship Program.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

216_2017_422_MOESM1_ESM.pdf (755 kb)
ESM 1 (PDF 755 kb)


  1. 1.
    Peruga A, Hidalgo C, Sancho JV, Hernández F. Development of a fast analytical method for the individual determination of pyrethrins residues in fruits and vegetables by liquid chromatography–tandem mass spectrometry. J Chromatogr A. 2013;1307:126–34. doi: 10.1016/j.chroma.2013.07.090.CrossRefGoogle Scholar
  2. 2.
    Rawn DFK, Judge J, Roscoe V. Application of the QuEChERS method for the analysis of pyrethrins and pyrethroids in fish tissues. Anal Bioanal Chem. 2010;397(6):2525–31. doi: 10.1007/s00216-010-3786-5.CrossRefGoogle Scholar
  3. 3.
    Albaseer SS, Rao RN, Swamy YV, Mukkanti K, Bandi BG. Micro liquid-liquid extraction of synthetic pyrethroids from surface waters for liquid-chromatographic determination. Toxicol Environ Chem. 2011;93(7):1309–18. doi: 10.1080/02772248.2011.589843.CrossRefGoogle Scholar
  4. 4.
    Feo ML, Eljarrat E, Barcelo D. A rapid and sensitive analytical method for the determination of 14 pyrethroids in water samples. J Chromatogr A. 2010;1217(15):2248–53. doi: 10.1016/j.chroma.2010.02.018.CrossRefGoogle Scholar
  5. 5.
    Boonchiangma S, Ngeontae W, Srijaranai S. Determination of six pyrethroid insecticides in fruit juice samples using dispersive liquid-liquid microextraction combined with high performance liquid chromatography. Talanta. 2012;88:209–15. doi: 10.1016/j.talanta.2011.10.033.CrossRefGoogle Scholar
  6. 6.
    Mekebri A, Crane DB, Blondina GJ, Oros DR, Rocca JL. Extraction and analysis methods for the determination of pyrethroid insecticides in surface water, sediments and biological tissues at environmentally relevant concentrations. B Environ Contam Tox. 2008;80(5):455–60. doi: 10.1007/s00128-008-9382-0.CrossRefGoogle Scholar
  7. 7.
    Feo ML, Ginebreda A, Eljarrat E, Barcelo D. Presence of pyrethroid pesticides in water and sediments of Ebro River Delta. J Hydrol. 2010;393(3–4):156–62. doi: 10.1016/j.jhydrol.2010.08.012.CrossRefGoogle Scholar
  8. 8.
    Rocha MJ, Ribeiro MFT, Cruzeiro C, Figueiredo F, Rocha E. Development and validation of a GC-MS method for determination of 39 common pesticides in estuarine water—targeting hazardous amounts in the Douro River estuary. Int J Environ Anal Chem. 2012;92(14):1587–608. doi: 10.1080/03067319.2011.581366.CrossRefGoogle Scholar
  9. 9.
    Chalanyova M, Hutta M, Pagac M. On-line flow-through extraction-preconcentration-large volume injection-RP LC for trace determination of pyrethroids in Slovak soil. J Sep Sci. 2010;33(2):134–42. doi: 10.1002/jssc.200900439.CrossRefGoogle Scholar
  10. 10.
    Raeppel C, Appenzeller BM, Millet M. Determination of seven pyrethroids biocides and their synergist in indoor air by thermal-desorption gas chromatography/mass spectrometry after sampling on Tenax TA (R) passive tubes. Talanta. 2015;131:309–14. doi: 10.1016/j.talanta.2014.07.098.CrossRefGoogle Scholar
  11. 11.
    2008 CRENoS. Laying down detailed rules for the implementation of Council Regulation (EC) No 834/2007 on organic production and labelling of organic products with regard to organic production, labelling and control. 2008.Google Scholar
  12. 12.
    98/83/EC CD. On the quality of water intended for human consumption. 1998.Google Scholar
  13. 13.
    Albaseer SS, Rao RN, Swamy YV, Mukkanti K. An overview of sample preparation and extraction of synthetic pyrethroids from water, sediment and soil. J Chromatogr A. 2010;1217(35):5537–54. doi: 10.1016/j.chroma.2010.06.058.CrossRefGoogle Scholar
  14. 14.
    Lin C-H, Ponnusamy VK, Li H-P, Jen J-F. Fast analysis of synthetic pyrethroid metabolites in water samples using in-syringe derivatization coupled hollow fiber mediated liquid phase microextraction with GC-ECD. Chromatographia. 2013;76(1–2):75–83. doi: 10.1007/s10337-012-2360-z.CrossRefGoogle Scholar
  15. 15.
    Wu J, Lin Y, Lu J, Wilson C. Copper clean-up procedure for ultrasonic extraction and analysis of pyrethroid and phenylpyrazole pesticides in sediments by gas chromatography-electron capture detection. Sci Total Environ. 2011;409(18):3482–91. doi: 10.1016/j.scitotenv.2011.04.032.CrossRefGoogle Scholar
  16. 16.
    You J, Wang D, Lydy MJ. Determination of pyrethroid insecticides in sediment by gas chromatography-ion trap tandem mass spectrometry. Talanta. 2010;81(1–2):136–41. doi: 10.1016/j.talanta.2009.11.050.CrossRefGoogle Scholar
  17. 17.
    Wang H, Yan H, Qiao J. Miniaturized matrix solid-phase dispersion combined with ultrasound-assisted dispersive liquid-liquid microextraction for the determination of three pyrethroids in soil. J Sep Sci. 2012;35(2):292–8. doi: 10.1002/jssc.201100753.CrossRefGoogle Scholar
  18. 18.
    Luo LN, Shao B, Zhang J. Pressurized liquid extraction and cleanup procedure for the determination of pyrethroids in soils using gas chromatography/tandem mass spectrometry. Anal Sci. 2010;26(4):461–5.CrossRefGoogle Scholar
  19. 19.
    Zhang Y, Zhang X, Jiao B. Determination of ten pyrethroids in various fruit juices: comparison of dispersive liquid-liquid microextraction sample preparation and QuEChERS method combined with dispersive liquid-liquid microextraction. Food Chem. 2014;159:367–73. doi: 10.1016/j.foodchem.2014.03.028.CrossRefGoogle Scholar
  20. 20.
    Ye J, Yao Z, Wang Z, Nie J, Li Z. Determination of sixteen pyrethroids in water using dispersive liquid-liquid microextraction based on dissolved carbon dioxide flotation after emulsification microextraction using gas chromatography with triple quadrupole mass spectrometry. Anal Methods. 2016;8(32):6194–201. doi: 10.1039/c6ay01503d.CrossRefGoogle Scholar
  21. 21.
    Farajzadeh MA, Khoshmaram L. A rapid and sensitive method for the analysis of pyrethroid pesticides using the combination of liquid-liquid extraction and dispersive liquid-liquid microextraction. Clean (Weinh). 2015;43(1):51–8. doi: 10.1002/clen.201300663.Google Scholar
  22. 22.
    Hou M, Zang X, Wang C, Wang Z. The use of silica-coated magnetic graphene microspheres as the adsorbent for the extraction of pyrethroid pesticides from orange and lettuce samples followed by GC-MS analysis. J Sep Sci. 2013;36(19):3242–8. doi: 10.1002/jssc.201300656.Google Scholar
  23. 23.
    Mukdasai S, Thomas C, Srijaranai S. Two-step microextraction combined with high performance liquid chromatographic analysis of pyrethroids in water and vegetable samples. Talanta. 2014;120:289–96. doi: 10.1016/j.talanta.2013.12.005.CrossRefGoogle Scholar
  24. 24.
    Albaseer SS, Rao RN, Swamy YV, Mukkanti K. Evaluation of polytetrafluoroethylene as a novel selective adsorbent for solid phase extraction followed by RP-HPLC determination of synthetic pyrethroids from surface waters. Anal Methods. 2014;6(6):1818–24. doi: 10.1039/c3ay41866a.CrossRefGoogle Scholar
  25. 25.
    Tong J, Chen L. Determination of pyrethroids in environmental waters using magnetic chitosan extraction coupled with high performance liquid chromatography detection. Anal Lett. 2013;46(8):1183–97. doi: 10.1080/00032719.2012.755687.CrossRefGoogle Scholar
  26. 26.
    Li C, Chen L. Determination of pyrethroid pesticides in environmental waters based on magnetic titanium dioxide nanoparticles extraction followed by HPLC analysis. Chromatographia. 2013;76(7–8):409–17. doi: 10.1007/s10337-013-2393-y.CrossRefGoogle Scholar
  27. 27.
    Yan H, Liu B, Du J, Yang G, Row KH. Ultrasound-assisted dispersive liquid-liquid microextraction for the determination of six pyrethroids in river water. J Chromatogr A. 2010;1217(32):5152–7. doi: 10.1016/j.chroma.2010.06.008.CrossRefGoogle Scholar
  28. 28.
    Hu L, Wang H, Qian H, Liu C, Lu R, Zhang S, et al. Centrifuge-less dispersive liquid-liquid microextraction base on the solidification of switchable solvent for rapid on-site extraction of four pyrethroid insecticides in water samples. J Chromatogr A. 2016;1472:1–9. doi: 10.1016/j.chroma.2016.10.013.CrossRefGoogle Scholar
  29. 29.
    Arnnok P, Patdhanagul N, Burakham R. Dispersive solid-phase extraction using polyaniline-modified zeolite NaY as a new sorbent for multiresidue analysis of pesticides in food and environmental samples. Talanta. 2017;164:651–61. doi: 10.1016/j.talanta.2016.11.003.CrossRefGoogle Scholar
  30. 30.
    Cheng H, Zhang LJ, Zhang L, Zhang ZE. Determination of three pyrethroids in soil by matrix solid phase dispersion extraction-dispersed liquid phase microextraction-gas chromatography mass spectrometry. Chinese J Anal Chem. 2015;43(1):137–40.Google Scholar
  31. 31.
    Zhang W, Lv J, Shi R, Liao C. A rapid screening method for the determination of seventy pesticide residues in soil using microwave-assisted extraction coupled to gas chromatography and mass spectrometry. Soil Sediment Contam. 2012;21(4):407–18. doi: 10.1080/15320383.2012.672489.CrossRefGoogle Scholar
  32. 32.
    Wongsa N, Burakham R. A simple solid-phase extraction coupled to high-performance liquid chromatography-UV detection for quantification of pyrethroid residues in fruits and vegetables. Food Anal Methods. 2012;5(4):849–55. doi: 10.1007/s12161-011-9317-y.CrossRefGoogle Scholar
  33. 33.
    Jiang C, Sun Y, Yu X, Gao Y, Zhang L, Wang Y, et al. Liquid-solid extraction coupled with magnetic solid-phase extraction for determination of pyrethroid residues in vegetable samples by ultra fast liquid chromatography. Talanta. 2013;114:167–75. doi: 10.1016/j.talanta.2013.04.004.CrossRefGoogle Scholar
  34. 34.
    Chung SWC, Lam CH. Development and validation of a method for determination of residues of 15 pyrethroids and two metabolites of dithiocarbamates in foods by ultra-performance liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2012;403(3):885–96. doi: 10.1007/s00216-012-5882-1.CrossRefGoogle Scholar
  35. 35.
    Albaseer SS. Micro liquid-liquid extraction of synthetic pyrethroids from surface waters for liquid-chromatographic determination (vol 93, pg 1309, 2011). Toxicol Environ Chem. 2012;94(2):427. doi: 10.1080/02772248.2011.646040.CrossRefGoogle Scholar
  36. 36.
    Liu L, Cheng J, Matsadiq G, Zhou H, Li J. Application of DLLME to the determination of pyrethroids in aqueous samples. Chromatographia. 2010;72(9–10):1017–20. doi: 10.1365/s10337-010-1732-5.CrossRefGoogle Scholar
  37. 37.
    Rezaee M, Assadi Y, Milani Hosseini M-R, Aghaee E, Ahmadi F, Berijani S. Determination of organic compounds in water using dispersive liquid–liquid microextraction. J Chromatogr A. 2006;1116(1–2):1–9. doi: 10.1016/j.chroma.2006.03.007.CrossRefGoogle Scholar
  38. 38.
    Caldas SS, Costa FP, Primel EG. Validation of method for determination of different classes of pesticides in aqueous samples by dispersive liquid–liquid microextraction with liquid chromatography–tandem mass spectrometric detection. Anal Chim Acta. 2010;665(1):55–62. doi: 10.1016/j.aca.2010.03.004.CrossRefGoogle Scholar
  39. 39.
    Hashemi P, Raeisi F, Ghiasvand AR, Rahimi A. Reversed-phase dispersive liquid–liquid microextraction with central composite design optimization for preconcentration and HPLC determination of oleuropein. Talanta. 2010;80(5):1926–31.CrossRefGoogle Scholar
  40. 40.
    Rezaee M, Yamini Y, Faraji M. Evolution of dispersive liquid–liquid microextraction method. J Chromatogr A. 2010;1217(16):2342–57. doi: 10.1016/j.chroma.2009.11.088.CrossRefGoogle Scholar
  41. 41.
    Mudiam MKR, Jain R, Singh A, Khan HA, Parmar D. Development of ultrasound-assisted dispersive liquid-liquid microextraction-large volume injection-gas chromatography-tandem mass spectrometry method for determination of pyrethroid metabolites in brain of cypermethrin-treated rats. Forensic Toxicol. 2014;32(1):19–29. doi: 10.1007/s11419-013-0196-3.CrossRefGoogle Scholar
  42. 42.
    Tadeo JL, Sánchez-Brunete C, Albero B, García-Valcárcel AI. Application of ultrasound-assisted extraction to the determination of contaminants in food and soil samples. J Chromatogr A. 2010;1217(16):2415–40. doi: 10.1016/j.chroma.2009.11.066.CrossRefGoogle Scholar
  43. 43.
    Fernandez P, Regenjo M, Fernandez AM, Lorenzo RA, Carro AM. Optimization of ultrasound-assisted dispersive liquid-liquid microextraction for ultra performance liquid chromatography determination of benzodiazepines in urine and hospital wastewater. Anal Methods. 2014;6(20):8239–46. doi: 10.1039/C4AY01348D.CrossRefGoogle Scholar
  44. 44.
    Picó Y. Ultrasound-assisted extraction for food and environmental samples. TRAC-Trend Anal Chem. 2013;43:84–99. doi: 10.1016/j.trac.2012.12.005.CrossRefGoogle Scholar
  45. 45.
    Commission E. Guidance document on analytical quality control and method validation procedures for pesticides residues analysis in food and feed. SANTE/11945/2015. Brussels. 2015.Google Scholar
  46. 46.
    Masiá A, Ibáñez M, Blasco C, Sancho JV, Picó Y, Hernández F. Combined use of liquid chromatography triple quadrupole mass spectrometry and liquid chromatography quadrupole time-of-flight mass spectrometry in systematic screening of pesticides and other contaminants in water samples. Anal Chim Acta. 2013;761:117–27. doi: 10.1016/j.aca.2012.11.032.CrossRefGoogle Scholar
  47. 47.
    Gil-García MD, Barranco-Martínez D, Martínez-Galera M, Parrilla-Vázquez P. Simple, rapid solid-phase extraction procedure for the determination of ultra-trace levels of pyrethroids in ground and sea water by liquid chromatography/electrospray ionization mass spectroscopy. Rapid Commun Mass Spectrom. 2006;20(16):2395–403. doi: 10.1002/rcm.2600.CrossRefGoogle Scholar
  48. 48.
    Yang X, Zhang P, Li X, Hu L, Gao H, Zhang S, et al. Effervescence-assisted beta-cyclodextrin/attapulgite composite for the in-syringe dispersive solid-phase extraction of pyrethroids in environmental water samples. Talanta. 2016;153:353–9. doi: 10.1016/j.talanta.2016.03.007.CrossRefGoogle Scholar
  49. 49.
    Yan H, Du J, Zhang X, Yang G, Row KH, Lv Y. Ultrasound-assisted dispersive liquid-liquid microextraction coupled with capillary gas chromatography for simultaneous analysis of nine pyrethroids in domestic wastewaters. J Sep Sci. 2010;33(12):1829–35. doi: 10.1002/jssc.200900716.CrossRefGoogle Scholar
  50. 50.
    Lawson AJ, Shipman KE, George S, Dasgupta I. A novel ‘dilute-and-shoot’ liquid chromatography-tandem mass spectrometry method for the screening of antihypertensive drugs in urine. J Anal Toxicol. 2016;40(1):17–27. doi: 10.1093/jat/bkv102.Google Scholar
  51. 51.
    Baygildiev T, Braun A, Stavrianidi A, Rodin I, Shpigun O, Rybalchenko I, et al. “Dilute-and-shoot” rapid-separation liquid chromatography tandem mass spectrometry method for fast detection of thiodiglycolic acid in urine. Eur J Mass Spectrom. 2015;21(5):733–8. doi: 10.1255/ejms.1387.CrossRefGoogle Scholar
  52. 52.
    Cao Z, Kaleta E, Wang P. Simultaneous quantitation of 78 drugs and metabolites in urine with a dilute-and-shoot LC-MS-MS assay. J Anal Toxicol. 2015;39(5):335–46. doi: 10.1093/jat/bkv024.CrossRefGoogle Scholar
  53. 53.
    Enders JR, McIntire GL. A dilute-and-shoot LC-MS method for quantitating opioids in oral fluid. J Anal Toxicol. 2015;39(8):662–7. doi: 10.1093/jat/bkv087.CrossRefGoogle Scholar
  54. 54.
    Florez MR, Garcia-Ruiz E, Bolea-Fernandez E, Vanhaecke F, Resano M. A simple dilute-and-shoot approach for the determination of ultra-trace levels of arsenic in biological fluids via ICP-MS using CH3F/He as a reaction gas. J Anal At Spectrom. 2016;31(1):245–51. doi: 10.1039/c5ja00298b.CrossRefGoogle Scholar
  55. 55.
    Aznar R, Moreno-Ramón H, Albero B, Sánchez-Brunete C, Tadeo JL. Spatio-temporal distribution of pyrethroids in soil in Mediterranean paddy fields. J Soils Sediments. 2016:1–11. Doi: 10.1007/s11368-016-1417-2.
  56. 56.
    Campo J, Masiá A, Blasco C, Picó Y. Occurrence and removal efficiency of pesticides in sewage treatment plants of four Mediterranean River basins. J Hazard Mater. 2013;263, Part 1:146–57. doi: 10.1016/j.jhazmat.2013.09.061.CrossRefGoogle Scholar
  57. 57.
    Aznar R, Sánchez-Brunete C, Albero B, Moreno-Ramón H, Tadeo JL. Pyrethroids levels in paddy field water under Mediterranean conditions: measurements and distribution modelling. Paddy Water Environ. 2016:1–10. Doi: 10.1007/s10333-016-0550-2.
  58. 58.
    Bagheri H, Yamini Y, Safari M, Asiabi H, Karimi M, Heydari A. Simultaneous determination of pyrethroids residues in fruit and vegetable samples via supercritical fluid extraction coupled with magnetic solid phase extraction followed by HPLC-UV. J Supercrit Fluids. 2016;107:571–80. doi: 10.1016/j.supflu.2015.07.017.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Alexander Ccanccapa-Cartagena
    • 1
  • Ana Masiá
    • 1
  • Yolanda Picó
    • 1
  1. 1.Food and Environmental Safety Research Group (SAMA-UV), Facultat de FarmàciaUniversitat de ValènciaBurjassotSpain

Personalised recommendations