Advertisement

Analytical and Bioanalytical Chemistry

, Volume 410, Issue 4, pp 1205–1216 | Cite as

Optical microalgal biosensors for aqueous contaminants using organically doped silica as cellular hosts

  • Nada Ben Ahmed
  • Sylvie Masse
  • Guillaume Laurent
  • Jean-Yves Piquemal
  • Claude Yéprémian
  • Roberta BraynerEmail author
  • Thibaud CoradinEmail author
Research Paper
Part of the following topical collections:
  1. Microbial Biosensors for Analytical Applications

Abstract

Optical biosensors for the detection of toxic species in aqueous media were developed via the encapsulation of microalgae in sol–gel matrices. In a first step, the effect of cadmium(II), lead(II), and anthracene on the chlorophyll a fluorescence intensity of Anabaena flos-aquae, Chlorella vulgaris, and Euglena gracilis microalgae in suspension was studied. Complementary ATP-metry measurements demonstrated a direct relationship between optical response and pollutant toxicity, in a cell- and dose-dependent manner. In a second step, microalgae were successfully encapsulated in silicate–colloidal silica nanocomposite matrices. However, a complete loss of cell response to pollutant addition was observed, despite the preservation of cell viability. Introduction of a low amount (5 mol%) of amine- or ethyl-bearing silanes in the matrix formulation allowed the recovery of the sensing capacity of the immobilized microalgae, without impacting on the response time (30 s). Porosimetry and 29Si solid-state NMR spectroscopy showed that the organic moieties are fully integrated into the inorganic network, tuning the ability of the target pollutant to diffuse and reach the encapsulated algae. This versatile strategy could be useful for the easy and fast assessment of contamination levels in polluted waters.

Graphical Abstract

Microalgal biosensors for aqueous contaminants using organically doped silica as cellular hosts

Keywords

Biosensors Microalgae Hybrid materials Contaminated water 

Notes

Acknowledgements

N.B.’s PhD studies were funded by the French Ministry for Superior Education and Research. The authors thank G. Thouand (GEnie des Procédés Environnement - Agroalimentaire (GEPEA), Université de Nantes) and B. Lebeau (Institut des Sciences des Matériaux de Mulhouse (ISMM), Université de Haute Alsace) for fruitful discussions.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2017_405_MOESM1_ESM.pdf (3 mb)
ESM 1 (PDF 3049 kb)

References

  1. 1.
    Torres MA, Barros MP, Campos SCG, Pinto E, Rajamani S, Sayre RT, et al. Biochemical biomarkers in algae and marine pollution. Ecotox Environ Safe. 2008;71:1–15.CrossRefGoogle Scholar
  2. 2.
    Trang PTK, Berg M, Viet PH, Mui NV, van der Meer JR. Bacterial bioassay for rapid and accurate analysis of arsenic in highly variable groundwater samples. Environ Sci Technol. 2005;39:7625–30.CrossRefGoogle Scholar
  3. 3.
    Augusto J, Brenneman TB. Assessing systemicity of peanut fungicides through bioassay of plant tissues with Sclerotium rolfsii. Plant Dis. 2012;96:330–7.CrossRefGoogle Scholar
  4. 4.
    Avishai N, Rabinowitz C, Moiseeva E, Rinkevich B. Genotoxicity of the Kishon River, Israel: the application of an in vitro cellular assay. Mutat Res. 2002;518:21–37.CrossRefGoogle Scholar
  5. 5.
    Durrieu C, Tran-Minh C, Chovelon JM, Barthet L, Chouteau C, Védrine C. Algal biosensors for aquatic ecosystems monitoring. Eur Phys J Appl Phys. 2006;36:205–9.CrossRefGoogle Scholar
  6. 6.
    Scognamiglio V, Pezzotti G, Pezzotti I, Cano J, Buonasera K, Giannini D, et al. Biosensors for effective environmental and agrifood protection and commercialization: from research to market. Microchim Acta. 2010;170:215–25.CrossRefGoogle Scholar
  7. 7.
    Brayner R, Couté A, Livage J, Perrette C. Sicard, C Micro-algal biosensors. Anal Bioanal Chem. 2011;401:581–97.CrossRefGoogle Scholar
  8. 8.
    Monteiro CM, Castro PML, Malcata FX. Metal uptake by microalgae: underlying mechanisms and practical applications. Biotechnol Prog. 2012;28:299–311.CrossRefGoogle Scholar
  9. 9.
    Sánchez-Rodrıguez I, Huerta-Diaz MA, Choumiline E, Holguın-Quinones O, Zertuche-González JA. Elemental concentrations in different species of seaweeds from Loreto Bay, Baja California Sur, Mexico: implications for the geochemical control of metals in algal tissue. Environ Poll. 2001;114:145–60.CrossRefGoogle Scholar
  10. 10.
    Gill I, Ballesteros A. Bioencapsulation within synthetic polymers (part 2): non-sol-gel protein-polymer biocomposites. Trends Biotechnol. 2000;18:469–79.CrossRefGoogle Scholar
  11. 11.
    Depagne C, Roux C, Coradin T. How to design cell-based biosensors using the sol-gel process. Anal Bional Chem. 2011;400:965–76.CrossRefGoogle Scholar
  12. 12.
    Moreno-Garrido I. Microalgae immobilization: current techniques and uses. Bioresour Technol. 2008;99:3949–64.CrossRefGoogle Scholar
  13. 13.
    Böttcher H, Soltmann U, Mertig M, Pompe W. Biocers: ceramics with incorporated microorganisms for biocatalytic, biosorptive and functional materials development. J Mater Chem. 2004;14:2176–88.CrossRefGoogle Scholar
  14. 14.
    Rooke JC, Leonard A, Meunier CF, Su BL. Designing photobioreactors based on living cells immobilized in silica gel for carbon dioxide mitigation. ChemSusChem. 2011;4:1249–57.CrossRefGoogle Scholar
  15. 15.
    Blondeau M, Coradin T. Living materials from sol–gel chemistry: current challenges and perspectives. J Mater Chem. 2012;22:22335–43.CrossRefGoogle Scholar
  16. 16.
    Dickson DJ, Ely RL. Silica sol-gel encapsulation of cyanobacteria: lessons for academic and applied research. Appl Microbiol Biotechnol. 2013;97:1809–19.CrossRefGoogle Scholar
  17. 17.
    Pena-Vazquez E, Maneiro E, Perez-Conde C, Moreno-Bondi MC, Costas E. Microalgae fiber optic biosensors for herbicide monitoring using sol–gel technology. Biosens Bioelectron. 2009;24:3538–43.CrossRefGoogle Scholar
  18. 18.
    Darder M, Aranda P, Burgos-Asperilla L, Llobera A, Cadarso VJ, Fernandez-Sanchez C, et al. Algae–silica systems as functional hybrid materials. J Mater Chem. 2010;20:9362–9.CrossRefGoogle Scholar
  19. 19.
    Perullini M, Ferro Y, Durrieu C, Jobbagy M, Bilmes SA. Sol–gel silica platforms for microalgae-based optical biosensors. J Biotechnol. 2014;179:65–70.CrossRefGoogle Scholar
  20. 20.
    Pannier A, Soltmann U, Altenburger R, Schmitt-Jansen M. Alginate/silica hybrid materials for immobilization of green microalgae Chlorella vulgaris for cell-based sensor arrays. J Mater Chem B. 2014;2:7896–910.CrossRefGoogle Scholar
  21. 21.
    Nassif N, Bouvet O, Rager MN, Roux C, Coradin T, Livage J. Living bacteria in silica gels. Nat Mater. 2002;1:42–4.CrossRefGoogle Scholar
  22. 22.
    Dahoumane SA, Yéprémian C, Djédiat C, Couté A, Fiévet F, Coradin T, et al. Improvement of kinetics, yield, and colloidal stability of biogenic gold nanoparticles using living cells of Euglena gracilis microalga. J Nanopart Res. 2016;18:79.CrossRefGoogle Scholar
  23. 23.
    Järup L, Akesson A. Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol. 2009;238:201–8.CrossRefGoogle Scholar
  24. 24.
    Flora G, Gupta D, Towari A. Toxicity of lead: a review with recent updates. Interdiscip Toxicol. 2012;5:47–58.CrossRefGoogle Scholar
  25. 25.
    Sverdrup LE, Krogh PH, Nielsen T, Kjaer C, Stenersen J. Toxicity of eight polycyclic aromatic compounds to red clover (Trifolium pratense), ryegrass (Lolium perenne), and mustard (Sinapsis alba). Chemosphere. 2003;53:993–1003.CrossRefGoogle Scholar
  26. 26.
    Crouch SP, Kozlowski R, Slater KJ, Fletcher J. The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity. J Immun Methods. 1993;160:81–8.CrossRefGoogle Scholar
  27. 27.
    Blondeau M, Brayner R, Guyot F, Coradin T. Correlating biological methods to assess Escherichia coli bacteria viability in silica gels. Anal Methods. 2014;6:2429–31.CrossRefGoogle Scholar
  28. 28.
    Fung M, Khitrin AK, Ermolaev K. An improved broadband decoupling sequence for liquid crystals and solids. J Magn Reson. 2000;142:97–101.CrossRefGoogle Scholar
  29. 29.
    Lesage A, Sakellariou D, Hediger S, Elena B, Charmont P, Steuernagel S, et al. Experimental aspects of proton NMR spectroscopy in solids using phase-modulated homonuclear dipolar decoupling. J Magn Reson. 2003;163:105–13.CrossRefGoogle Scholar
  30. 30.
    Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl Chem. 2015;87:1051–69.CrossRefGoogle Scholar
  31. 31.
    Lassiaz S, Labarre D, Galarneau A, Brunel D, Mutin PH. Modification of silica by an organic monolayer in aqueous medium using octylphosphonic acid and aluminium species. J Mater Chem. 2011;21:8199–205.CrossRefGoogle Scholar
  32. 32.
    Bernardoni F, Fadeev AY. Adsoption and wetting characterization of hydrophobic SBA-15 silica. J Colloid Interface Sci. 2011;356:690–8.CrossRefGoogle Scholar
  33. 33.
    Brunel D, Cauvel A, Di Renzo F, Fajula F, Fubini B, Onida B, et al. Preferential grafting of alkoxysilane coupling agents on the hydrophobic portion of the surface of micell-templated silica. New J Chem. 2000;24:807–13.CrossRefGoogle Scholar
  34. 34.
    Bonhomme C, Coelho C, Baccile N, Gervais C, Azaïs T, Babonneau F. Advanced solid state NMR techniques for the characterization of sol-gel derived materials. Acc Chem Res. 2007;40:738–46.CrossRefGoogle Scholar
  35. 35.
    Gervais C, Coelho C, Azaïs T, Maquet J, Laurent G, Pourpoint F, et al. First principles NMR calculations of phenylphosphinic acid C6H5HPO(OH): assignments, orientation of tensors by local field experiments and effect of molecular motion. J Magn Reson. 2007;187:131–40.CrossRefGoogle Scholar
  36. 36.
    Heng LY, Jusoh K, Ling CHM, Idris M. Toxicity of single and combinations of lead and cadmium to the cyanobacteria Anabaena flos-aquae. Bull Environ Contam Toxicol. 2004;72:373–9.CrossRefGoogle Scholar
  37. 37.
    Surosz W, Palinska KA. Effects of heavy-metal stress on cyanobacterium Anabaena flos-aquae. Arch Environ Contamin Toxicol. 2004;48:40–8.CrossRefGoogle Scholar
  38. 38.
    Bajguz A. Suppression of Chlorella vulgaris growth by cadmium, lead, and copper stress and its restoration by endogenous brassinolide. Arch Environ Contamin Toxicol. 2011;60:406–16.CrossRefGoogle Scholar
  39. 39.
    Ouyang HL, Kong XZ, He W, Qin N, He QS, Wang Y, et al. Effects of five heavy metals at sub-lethal concentrations on the growth and photosynthesis of Chlorella vulgaris. Chin Sci Bull. 2012;57:3363–70.CrossRefGoogle Scholar
  40. 40.
    Navarro L, Torres-Marquez ML, Gonzalez-Moreno S, Devars S, Hernandez R, Moreno-Sanchez R. A comparison of physiological changes in the protist Euglena gracilis during exposure to heavy metals of heterotrophic and autotrophic cells. Comp Biochem Physiol. 1997;116:265–72.Google Scholar
  41. 41.
    McGrath JA, Di Toro DM. Validation of the target lipid model for toxicity assessment of residual petroleum constituents : monocyclic and polycyclic aromatic hydrocarbons. Environ Toxicol Chem. 2009;28:1130–48.CrossRefGoogle Scholar
  42. 42.
    Aksmann A, Tukaj Z. The Effect of anthracene and phenanthrene on the growth, photosynthesis, and SOD activity of the green alga Scenedesmus armatus depends on the PAR irradiance and CO2 level. Arch Environ Contam Toxicol. 2004;47:177–84.CrossRefGoogle Scholar
  43. 43.
    Patel JG, Nirmal Kumar JI, Khan SR. Consequences of environmentally hazardous polycyclic aromatic hydrocarbon- anthracene treatment on cyanobacteria. Int J Appl Sci Biotechnol. 2015;3:381–6.CrossRefGoogle Scholar
  44. 44.
    Dugger DL, Stanton JH, Irby BN, McConnell BL, Cummings WW, Maatman RW. The exchange of twenty metal ions with the weakly acidic silanol group of silica gel. J Phys Chem. 1964;68:757–60.CrossRefGoogle Scholar
  45. 45.
    Nassif N, Roux C, Coradin T, Bouvet OMM, Livage J. Bacteria quorum sensing in silica matrices. J Mater Chem. 2004;14:2264–8.CrossRefGoogle Scholar
  46. 46.
    Nassif N, Roux C, Rager MN, Bouvet OMM, Coradin T, Livage J. A sol-gel matrix to preserve the viability of encapsulated bacteria. J Mater Chem. 2003;13:203–8.CrossRefGoogle Scholar
  47. 47.
    Aguado J, Arsuaga JM, Arencibia A, Lindo M, Gascon V. Aqueous heavy metals removal by adsorption on amine-functionalized mesoporous silica. J Hazard Mater. 2009;163:213–21.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Nada Ben Ahmed
    • 1
    • 2
  • Sylvie Masse
    • 1
  • Guillaume Laurent
    • 1
  • Jean-Yves Piquemal
    • 2
  • Claude Yéprémian
    • 3
  • Roberta Brayner
    • 2
    Email author
  • Thibaud Coradin
    • 1
    Email author
  1. 1.Sorbonne Universités, Université Pierre et Marie Curie, CNRS, Collège de FranceParisFrance
  2. 2.Sorbonne Paris Cité, Interfaces, Traitements, Organisation et Dynamique des Systèmes, UMR 7086, CNRSParis-Diderot UniversityParisFrance
  3. 3.Département RDDM, UMR 7245, Unité MCAMMuséum National d’Histoire NaturelleParisFrance

Personalised recommendations