Analytical and Bioanalytical Chemistry

, Volume 409, Issue 18, pp 4437–4447 | Cite as

Development of a hydrophilic interaction liquid chromatography coupled with matrix-assisted laser desorption/ionization-mass spectrometric imaging platform for N-glycan relative quantitation using stable-isotope labeled hydrazide reagents

  • Zhengwei Chen
  • Xuefei Zhong
  • Cai Tie
  • Bingming Chen
  • Xinxiang Zhang
  • Lingjun LiEmail author
Research Paper


In this work, the capability of newly developed hydrophilic interaction liquid chromatography (HILIC) coupled with matrix-assisted laser desorption/ionization-mass spectrometric imaging (MALDI-MSI) platform for quantitative analysis of N-glycans has been demonstrated. As a proof-of-principle experiment, heavy and light stable-isotope labeled hydrazide reagents labeled maltodextrin ladder were used to demonstrate the feasibility of the HILIC-MALDI-MSI platform for reliable quantitative analysis of N-glycans. MALDI-MSI analysis by an Orbitrap mass spectrometer enabled high-resolution and high-sensitivity detection of N-glycans eluted from HILIC column, allowing the re-construction of LC chromatograms as well as accurate mass measurements for structural inference. MALDI-MSI analysis of the collected LC traces showed that the chromatographic resolution was preserved. The N-glycans released from human serum was used to demonstrate the utility of this novel platform in quantitative analysis of N-glycans from a complex sample. Benefiting from the minimized ion suppression provided by HILIC separation, comparison between MALDI-MS and the newly developed platform HILIC-MALDI-MSI revealed that HILIC-MALDI-MSI provided higher N-glycan coverage as well as better quantitation accuracy in the quantitative analysis of N-glycans released from human serum.

Graphical abstract

Reconstructed chromatograms based on HILIC-MALDI-MSI results of heavy and light labeled maltodextrin enabling quantitative glycan analysis


Glycomics N-Glycans MALDI imaging Quantitation HILIC Hydrazide reagents 



This research was supported in part by the National Institutes of Health (NIH) grants R21AG055377, R01 DK071801, and R56 MH110215. The Orbitrap instruments were purchased through the support of an NIH shared instrument grant (NIH-NCRR S10RR029531) and Office of the Vice Chancellor for Research and Graduate Education at the University of Wisconsin-Madison. LL acknowledges a Vilas Distinguished Achievement Professorship with funding provided by the Wisconsin Alumni Research Foundation and University of Wisconsin-Madison School of Pharmacy.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2017_387_MOESM1_ESM.pdf (541 kb)
ESM 1 (PDF 540 kb)


  1. 1.
    Ohtsubo K, Marth JD. Glycosylation in cellular mechanisms of health and disease. Cell. 2006;126(5):855–67.CrossRefGoogle Scholar
  2. 2.
    Marth JD, Grewal PK. Mammalian glycosylation in immunity. Nat Rev Immunol. 2008;8(11):874–87.CrossRefGoogle Scholar
  3. 3.
    Apweiler R, Hermjakob H, Sharon N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta (BBA)-Gen Subj. 1999;1473(1):4–8.CrossRefGoogle Scholar
  4. 4.
    Jaeken J. Congenital disorders of glycosylation. Ann N Y Acad Sci. 2010;1214(1):190–8.CrossRefGoogle Scholar
  5. 5.
    Fuster MM, Esko JD. The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer. 2005;5(7):526–42.CrossRefGoogle Scholar
  6. 6.
    Blomme B, Van Steenkiste C, Callewaert N, Van Vlierberghe H. Alteration of protein glycosylation in liver diseases. J Hepatol. 2009;50(3):592–603.CrossRefGoogle Scholar
  7. 7.
    Xu S, Ye M, Xu D, Li X, Pan C, Zou H. Matrix with high salt tolerance for the analysis of peptide and protein samples by desorption/ionization time-of-flight mass spectrometry. Anal Chem. 2006;78(8):2593–9.CrossRefGoogle Scholar
  8. 8.
    Ohta Y, Iwamoto S, Kawabata S-I, Tanimura R, Tanaka K. Salt tolerance enhancement of liquid chromatography-matrix-assisted laser desorption/ionization-mass spectrometry using matrix additive methylenediphosphonic acid. Mass Spectrometry. 2014;3(1):A0031-A.CrossRefGoogle Scholar
  9. 9.
    Börnsen KO. Influence of salts, buffers, detergents, solvents, and matrices on MALDI-MS protein analysis in complex mixtures. Mass Spectrometry of Proteins and Peptides: Mass Spectrometry of Proteins and Peptides. 2000:387–404.Google Scholar
  10. 10.
    Fu Y, Xu S, Pan C, Ye M, Zou H, Guo B. A matrix of 3, 4-diaminobenzophenone for the analysis of oligonucleotides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Nucleic Acids Res. 2006;34(13):e94-e.CrossRefGoogle Scholar
  11. 11.
    Annesley TM. Ion suppression in mass spectrometry. Clin Chem. 2003;49(7):1041–4.CrossRefGoogle Scholar
  12. 12.
    Mueller DR, Voshol H, Waldt A, Wiedmann B, Van Oostrum J. LC-MALDI MS and MS/MS—an efficient tool in proteome analysis. Subcellular Proteomics. Springer; 2007. p. 355–80.Google Scholar
  13. 13.
    Sparbier K, Asperger A, Resemann A, Kessler I, Koch S, Wenzel T, et al. Analysis of glycoproteins in human serum by means of glycospecific magnetic bead separation and LC-MALDI-TOF/TOF analysis with automated glycopeptide detection. J Biomol Tech. 2007;18(4):252.Google Scholar
  14. 14.
    Hattan SJ, Parker KC. Methodology utilizing MS signal intensity and LC retention time for quantitative analysis and precursor ion selection in proteomic LC-MALDI analyses. Anal Chem. 2006;78(23):7986–96.CrossRefGoogle Scholar
  15. 15.
    Perlman DH, Huang H, Dauly C, Costello CE, McComb ME. Coupling of protein HPLC to MALDI-TOF MS using an on-target device for fraction collection, concentration, digestion, desalting, and matrix/analyte cocrystallization. Anal Chem. 2007;79(5):2058–66.CrossRefGoogle Scholar
  16. 16.
    Maslen S, Sadowski P, Adam A, Lilley K, Stephens E. Differentiation of isomeric N-glycan structures by normal-phase liquid chromatography-MALDI-TOF/TOF tandem mass spectrometry. Anal Chem. 2006;78(24):8491–8.CrossRefGoogle Scholar
  17. 17.
    Maslen SL, Goubet F, Adam A, Dupree P, Stephens E. Structure elucidation of arabinoxylan isomers by normal phase HPLC–MALDI-TOF/TOF-MS/MS. Carbohydr Res. 2007;342(5):724–35.CrossRefGoogle Scholar
  18. 18.
    Zaia J. Mass spectrometry and glycomics. OMICS: J Integrative Biol. 2010;14(4):401–18.CrossRefGoogle Scholar
  19. 19.
    Dixon RB, Bereman MS, Petitte JN, Hawkridge AM, Muddiman DC. One-year plasma N-linked glycome intra-individual and inter-individual variability in the chicken model of spontaneous ovarian adenocarcinoma. Int J Mass Spectrom. 2011;305(2):79–86.CrossRefGoogle Scholar
  20. 20.
    Bereman MS, Williams TI, Muddiman DC. Development of a nanoLC LTQ orbitrap mass spectrometric method for profiling glycans derived from plasma from healthy, benign tumor control, and epithelial ovarian cancer patients. Anal Chem. 2008;81(3):1130–6.CrossRefGoogle Scholar
  21. 21.
    Bereman MS, Young DD, Deiters A, Muddiman DC. Development of a robust and high throughput method for profiling N-linked Glycans derived from plasma glycoproteins by NanoLC−FTICR mass spectrometry. J Proteome Res. 2009;8(7):3764–70.CrossRefGoogle Scholar
  22. 22.
    Wuhrer M, Koeleman CA, Deelder AM, Hokke CH. Normal-phase nanoscale liquid chromatography-mass spectrometry of underivatized oligosaccharides at low-femtomole sensitivity. Anal Chem. 2004;76(3):833–8.CrossRefGoogle Scholar
  23. 23.
    Butler M, Quelhas D, Critchley AJ, Carchon H, Hebestreit HF, Hibbert RG, et al. Detailed glycan analysis of serum glycoproteins of patients with congenital disorders of glycosylation indicates the specific defective glycan processing step and provides an insight into pathogenesis. Glycobiology. 2003;13(9):601–22.CrossRefGoogle Scholar
  24. 24.
    Walker SH, Lilley LM, Enamorado MF, Comins DL, Muddiman DC. Hydrophobic derivatization of N-linked glycans for increased ion abundance in electrospray ionization mass spectrometry. J Am Soc Mass Spectrom. 2011;22(8):1309–17.CrossRefGoogle Scholar
  25. 25.
    Walker SH, Papas BN, Comins DL, Muddiman DC. Interplay of permanent charge and hydrophobicity in the electrospray ionization of glycans. Anal Chem. 2010;82(15):6636–42.CrossRefGoogle Scholar
  26. 26.
    Bereman MS, Comins DL, Muddiman DC. Increasing the hydrophobicity and electrospray response of glycans through derivatization with novel cationic hydrazides. Chem Commun. 2009;46(2):237–9.CrossRefGoogle Scholar
  27. 27.
    Bowman MJ, Zaia J. Comparative glycomics using a tetraplex stable-isotope coded tag. Anal Chem. 2010;82(7):3023–31.CrossRefGoogle Scholar
  28. 28.
    Xia B, Feasley CL, Sachdev GP, Smith DF, Cummings RD. Glycan reductive isotope labeling for quantitative glycomics. Anal Biochem. 2009;387(2):162–70.CrossRefGoogle Scholar
  29. 29.
    Zhang Z, Jiang S, Li L. Semi-automated liquid chromatography–mass spectrometric imaging platform for enhanced detection and improved data analysis of complex peptides. J Chromatogr. 2013;1293:44–50.CrossRefGoogle Scholar
  30. 30.
    Zhang Z, Kuang J, Li L. Liquid chromatography-matrix-assisted laser desorption/ionization mass spectrometric imaging with sprayed matrix for improved sensitivity, reproducibility and quantitation. Analyst. 2013;138(21):6600–6.CrossRefGoogle Scholar
  31. 31.
    Tie C, Zhang X-X. A new labelling reagent for glycans analysis by capillary electrophoresis-mass spectrometry. Anal Methods. 2012;4(2):357–9.CrossRefGoogle Scholar
  32. 32.
    Hecht ES, McCord JP, Muddiman DC. Definitive screening design optimization of mass spectrometry parameters for sensitive comparison of filter and solid phase extraction purified. INLIGHT Plasma N-Glycans Anal Chem. 2015;87(14):7305–12.Google Scholar
  33. 33.
    Song T, Aldredge D, Lebrilla CB. A method for in-depth structural annotation of human serum glycans that yields biological variations. Anal Chem. 2015;87(15):7754–62. doi: 10.1021/acs.analchem.5b01340.CrossRefGoogle Scholar
  34. 34.
    Aldredge D, An HJ, Tang N, Waddell K, Lebrilla CB. Annotation of a serum N-glycan library for rapid identification of structures. J Proteome Res. 2012;11(3):1958–68. doi: 10.1021/pr2011439.CrossRefGoogle Scholar
  35. 35.
    Zhao M-Z, Zhang Y-W, Yuan F, Deng Y, Liu J-X, Zhou Y-L, et al. Hydrazino-s-triazine based labelling reagents for highly sensitive glycan analysis via liquid chromatography–electrospray mass spectrometry. Talanta. 2015;144:992–7.CrossRefGoogle Scholar
  36. 36.
    Zhang Y, Zhu J, Yin H, Marrero J, Zhang X-X, Lubman DM. ESI–LC–MS method for haptoglobin fucosylation analysis in hepatocellular carcinoma and liver cirrhosis. J Proteome Res. 2015;14(12):5388–95.CrossRefGoogle Scholar
  37. 37.
    Zhao M-Z, Tie C, Zhang Y-W, Deng Y, Zhang F-T, Zhou Y-L, et al. Deuterated hydrazino-s-triazine as highly-efficient labelling reagent for glycan relative quantification analysis using electrospray ionization mass spectrometry. RSC Adv. 2015;5(97):79317–22.CrossRefGoogle Scholar
  38. 38.
    Wang J, Ye H, Zhang Z, Xiang F, Girdaukas G, Li L. Advancing matrix-assisted laser desorption/ionization-mass spectrometric imaging for capillary electrophoresis analysis of peptides. Anal Chem. 2011;83(9):3462–9.CrossRefGoogle Scholar
  39. 39.
    Duncan MW, Roder H, Hunsucker SW. Quantitative matrix-assisted laser desorption/ionization mass spectrometry. Brief Funct Genomic Proteomic. 2008;7(5):355–70.CrossRefGoogle Scholar
  40. 40.
    Gusev AI, Wilkinson WR, Proctor A, Hercules DM. Improvement of signal reproducibility and matrix/comatrix effects in MALDI analysis. Anal Chem. 1995;67(6):1034–41.CrossRefGoogle Scholar
  41. 41.
    Cohen SL, Chait BT. Influence of matrix solution conditions on the MALDI-MS analysis of peptides and proteins. Anal Chem. 1996;68(1):31–7.CrossRefGoogle Scholar
  42. 42.
    Karas M, Ehring H, Nordhoff E, Stahl B, Strupat K, Hillenkamp F, et al. Matrix-assisted laser desorption/ionization mass spectrometry with additives to 2, 5-dihydroxybenzoic acid. Org Mass Spectrom. 1993;28(12):1476–81.CrossRefGoogle Scholar
  43. 43.
    Nordhoff E, Schürenberg M, Thiele G, Lübbert C, Kloeppel K-D, Theiss D, et al. Sample preparation protocols for MALDI-MS of peptides and oligonucleotides using prestructured sample supports. Int J Mass Spectrom. 2003;226(1):163–80.CrossRefGoogle Scholar
  44. 44.
    Knochenmuss R, Zenobi R. MALDI ionization: the role of in-plume processes. Chem Rev. 2003;103(2):441–52.CrossRefGoogle Scholar
  45. 45.
    Schlosser G, Pocsfalvi G, Huszár E, Malorni A, Hudecz F. MALDI-TOF mass spectrometry of a combinatorial peptide library: effect of matrix composition on signal suppression. J Mass Spectrom. 2005;40(12):1590–4.CrossRefGoogle Scholar
  46. 46.
    Nicola AJ, Gusev AI, Proctor A, Jackson EK, Hercules DM. Application of the fast-evaporation sample preparation method for improving quantification of angiotensin II by matrix-laser desorption/ionization. Rapid Commun Mass Spectrom. 1995;9(12):1164–71.CrossRefGoogle Scholar
  47. 47.
    Zhong X, Chen Z, Snovida S, Liu Y, Rogers JC, Li L. Capillary electrophoresis-electrospray ionization-mass spectrometry for quantitative analysis of glycans labeled with multiplex carbonyl-reactive tandem mass tags. Anal Chem. 2015;87(13):6527–34.CrossRefGoogle Scholar
  48. 48.
    Yang S, Wang M, Chen L, Yin B, Song G, Turko IV, et al. QUANTITY: an isobaric tag for quantitative glycomics. Sci Rep. 2015;5:17585.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Zhengwei Chen
    • 1
  • Xuefei Zhong
    • 2
  • Cai Tie
    • 3
  • Bingming Chen
    • 2
  • Xinxiang Zhang
    • 3
  • Lingjun Li
    • 1
    • 2
    • 4
    Email author
  1. 1.Department of ChemistryUniversity of WisconsinMadisonUSA
  2. 2.School of PharmacyUniversity of WisconsinMadisonUSA
  3. 3.College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
  4. 4.School of Life SciencesTianjin UniversityTianjinChina

Personalised recommendations