Analytical and Bioanalytical Chemistry

, Volume 409, Issue 18, pp 4409–4423 | Cite as

The relative abundance of dimethylsulfoniopropionate (DMSP) among other zwitterions in branching coral at Heron Island, southern Great Barrier Reef

  • Hilton B. Swan
  • Elisabeth S. M. Deschaseaux
  • Graham B. Jones
  • Bradley D. Eyre
Research Paper

Abstract

Dimethylsulfoniopropionate (DMSP) and eleven other target zwitterions were quantified in the branch tips of six Acropora species and Stylophora pistillata hard coral growing on the reef flat surrounding Heron Island in the southern Great Barrier Reef (GBR), Australia. Hydrophilic interaction liquid chromatography mass spectrometry (HILIC-MS) was used for sample analysis with isotope dilution MS applied to quantify DMSP. The concentration of DMSP was ten times greater in A. aspera than A. valida, with this difference being maintained throughout the spring, summer and winter seasons. In contrast, glycine betaine was present in significantly higher concentrations in these species during the summer than the winter. Exposure of branch tips of A. aspera to air and hypo-saline seawater for up to 1 h did not alter the concentrations of DMSP present in the coral when compared with control samples. DMSP was the most abundant target zwitterion in the six Acropora species examined, ranging from 44-78% of all target zwitterions in A. millepora and A. aspera, respectively. In contrast, DMSP only accounted for 7% in S. pistillata, with glycine betaine and stachydrine collectively accounting for 88% of all target zwitterions in this species. The abundance of DMSP in the six Acropora species examined points to Acropora coral being an important source for the biogeochemical cycling of sulfur throughout the GBR, since this reef-building branching coral dominates the coral cover of the GBR.

Graphical Abstract

HILIC-MS extracted ion chromatogram showing zwitterionic metabolites from the branching coral Acropora isopora

Keywords

Betaines Coral DMSP Liquid chromatography Mass spectrometry Zwitterions 

Notes

Acknowledgements

This research was partially funded from Australian Research Council Discovery Program (ARCDP) grant DP150101649 to Professor Zoran Ristovski, Queensland University of Technology and A/Professor G.B. Jones, Southern Cross University (SCU). Additional funding was provided by the Marine Ecology Research Centre of SCU, and ARCDP grants DP110103638 and DP150102092 awarded to Professor B.D. Eyre. H.B. Swan would like to thank Agrifor Scientific (Sydney, Australia) for use of analytical equipment, and the National Measurement Institute, Australia for providing the DMSP.HCl and d 6 -DMSP.HCl chemical standards. All authors thank the staff of the Heron Island Research Station for assistance with our experimental needs, the Great Barrier Reef Marine Park Authority for provision of permits to collect coral, and Prof. Peter Harrison (SCU) for coral species identification.

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2017_385_MOESM1_ESM.pdf (128 kb)
ESM 1 (PDF 127 kb).

References

  1. 1.
    Hill RW, Li C, Jones AD, Gunn JP, Frade PR. Abundant betaines in reef-building corals and ecological indicators of a photoprotective role. Coral Reefs. 2010;29:869–80. doi: 10.1007/s00338-010-0662-x.CrossRefGoogle Scholar
  2. 2.
    Meikle P, Richards GN, Yellowlees D. Structural determination of the oligosaccharide side chains from a glycoprotein isolated from the mucus of the coral Acropora formosa. Journal Biol Chem. 1987;262(35):16941–7.Google Scholar
  3. 3.
    Hill RW, Dacey JWH, Krupp DA. Dimethylsulfoniopropionate in reef corals. Bulletin of Mar Sci. 1995;57:489–94.Google Scholar
  4. 4.
    Broadbent AD, Jones GB. DMS and DMSP in mucus ropes, coral mucus, surface films and sediment pore waters from coral reefs in the Great Barrier Reef. Mar Freshwater Res. 2004;55:849–55. doi: 10.1071/MF04114.CrossRefGoogle Scholar
  5. 5.
    Jones GB, Curran MAJ, Broadbent AD. Dimethylsulphide in the South Pacific. In: Bellwood O, Choat H, Saxena N, editors. Recent Advances in Marine Science and Technology 1994. Townsville: James Cook University Press; 1994. p. 183–90.Google Scholar
  6. 6.
    Raina J-B, Tapiolas DM, Foret S, Lutz A, Abrego D, Ceh J, Seneca FO, Clode PL, Bourne DG, Willis BL, Motti CA. DMSP biosynthesis by an animal and its role in coral thermal stress response. Nature. 2013;502:677–80.CrossRefGoogle Scholar
  7. 7.
    Deschaseaux ESM, Beltran VH, Jones GB, Deseo MA, Swan HB, Harrison PL, Eyre BD. Comparative response of DMS and DMSP concentrations in Symbiodinium clades C1 and D1 under thermal stress. J Exp Mar Biol Ecol. 2014;459:181–9. doi: 10.1016/j.jembe.2014.05.018.CrossRefGoogle Scholar
  8. 8.
    Deschaseaux ESM, Jones GB, Deseo MA, Shepherd KM, Kiene RP, Swan HB, Harrison PL, Eyre BD. Effects of environmental factors on dimethylated sulphur compounds and their potential role in the antioxidant system of the coral holobiont. Limnol Oceanogr. 2014;59(3):758–68. doi: 10.4319/lo.2014.59.3.0758.CrossRefGoogle Scholar
  9. 9.
    Jones GB, Fischer E, Deschaseaux ESM, Harrison PL. The effect of coral bleaching on the cellular concentrations of dimethylsulphoniopropionate in reef corals. J Exp Mar Biol Ecol. 2014;460:19–31. doi: 10.1016/j.jembe.2014.06.003.CrossRefGoogle Scholar
  10. 10.
    Gebser B, Pohnert G. Synchronized regulation of different zwitterionic metabolites in the osmoadaption of phytoplankton. Mar Drugs. 2013;11:2168–82. doi: 10.3390/md11062168.CrossRefGoogle Scholar
  11. 11.
    Yancy PH. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol. 2005;208:2819–30.CrossRefGoogle Scholar
  12. 12.
    Stefels J. Physiological aspects of the production and conversion of DMSP in marine algae and higher plants. J Sea Res. 2000;43:183–97.CrossRefGoogle Scholar
  13. 13.
    Zhang J, Nagahama T, Abo M, Okubo A, Yamazaki S. Capillary electrophoretic analysis of dimethylsulfoniopropionate in sugarcane and marine algal extracts. Talanta. 2005;66:244–8. doi: 10.1016/j.talanta.2004.11.019.CrossRefGoogle Scholar
  14. 14.
    White RH. Analysis of dimethyl sulfonium compounds in marine algae. J Mar Res. 1982;40:529–35.Google Scholar
  15. 15.
    Dacey JWH, Blough NV. Hydroxide decomposition of dimethylsulfoniopropionate to form dimethylsulfide. Geophys Res Lett. 1987;14(12):1246–9.CrossRefGoogle Scholar
  16. 16.
    Howard AG, Russell DW. An alternative approach to the measurement of β-dimethylsulfoniopropionate (DMSP) and other precursors of dimethylsulfide. In: Keller MD, Kiene RP, Kirst GO, Visscher PT, editors. Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds. New York: Plenum Press; 1996. p. 65–73.CrossRefGoogle Scholar
  17. 17.
    Gorham J. Separation of plant betaines and their sulphur analogues by cation-exchange high-performance liquid chromatography. J Chromatogr. 1984;287:345–51.CrossRefGoogle Scholar
  18. 18.
    Howard AG, Russell DW. HPLC-FPD instrumentation for the measurement of the atmospheric dimethyl sulfide precursor β-(dimethylsulfonio)propionate. Anal Chem. 1995;67(7):1293–5.CrossRefGoogle Scholar
  19. 19.
    Wiesemeier T, Pohnert G. Direct quantification of dimethylsulfoniopropionate (DMSP) in marine micro- and macroalgae using HPLC or UPLC/MS. J Chromatogr B. 2007;850:493–8. doi: 10.1016/jchromb.2006.12.023.CrossRefGoogle Scholar
  20. 20.
    Li C, Hill RW, Jones AD. Determination of betaine metabolites and dimethylsulfoniopropionate in coral tissues using liquid chromatography-time-of-flight mass spectrometry and stable isotope-labeled internal standards. J Chromatogr B. 2010;878(21):1809–16. doi: 10.1016/j.jchromb.2010.05.014.CrossRefGoogle Scholar
  21. 21.
    Spielmeyer A, Pohnert G. Direct quantification of dimethylsulfoniopropionate (DMSP) with hydrophilic interaction liquid chromatography/ mass spectrometry. J Chromatogr B. 2010;878(31):3238–42. doi: 10.1016/j.jchromb.2010.09.031.CrossRefGoogle Scholar
  22. 22.
    Nakamura H, Fujimaki K, Sampei O, Murai A. Gonyol: Methionine-induced sulfonium accumulation in a dinoflagellate Gonyaulax polyedra. Tetrahedron Lett. 1993;34(52):8481–4. doi: 10.1016/S0040-4039(00)61364-3.CrossRefGoogle Scholar
  23. 23.
    Swan HB, Armishaw P, Iavetz R, Alamgir M, Davies SR, Bell TG, Jones GB. An interlaboratory comparison for the quantification of aqueous dimethylsulfide. Limnol Oceanogr: Methods. 2014;12:784–94. doi: 10.4319/lom.2014.12.784.CrossRefGoogle Scholar
  24. 24.
    Fu R. Analysis of stachydrine in Leonurus japonicus using an Agilent ZORBAX RRHD HILIC plus column with LC/ELSD and LC/MS/MS: Agilent Technologies Inc. 2012, Application Note 5991-1047EN.Google Scholar
  25. 25.
    Spielmeyer A, Gebser B, Pohnert G. Investigations of the uptake of dimethylsulfoniopropionate by phytoplankton. ChemBioChem. 2011;12(15):2276–9. doi: 10.1002/cbic.201100416.CrossRefGoogle Scholar
  26. 26.
    Swan HB, Deschaseaux ESM, Jones GB, Eyre BD. Quantification of dimethylsulfoniopropionate (DMSP) in Acropora spp. of reef-building coral using mass spectrometry with deuterated internal standard. Anal Bioanal Chem. 2017;409(7):1929–42. doi: 10.1007/s00216-016-0141-5.CrossRefGoogle Scholar
  27. 27.
    Smith GC, Clark T, Knutsen L, Barrett E. Methodology for analyzing dimethyl sulfide and dimethyl sulfoniopropionate in seawater using deuterated internal standards. Anal Chem. 1999;71(24):5563–8.CrossRefGoogle Scholar
  28. 28.
    Frade PR, Schwaninger V, Glasl B, Sintes E, Hill RW, Simo R, Herndl GJ. Dimethylsulfoniopropionate in corals and its interrelations with bacterial assemblages in coral surface mucus. Environ Chem. 2016;13:252–65. doi: 10.1071/EN15023.CrossRefGoogle Scholar
  29. 29.
    Huettel M, Wild C, Gonelli S. Mucus trap in coral reefs: formation and temporal evolution of particle aggregates caused by coral mucus. Mar Ecol-Prog Ser. 2006;307:69–84.CrossRefGoogle Scholar
  30. 30.
    Berkelmans R, Jones AM, Schaffelke B. Salinity thresholds of Acropora spp. on the Great Barrier Reef. Coral Reefs. 2012;31(4):1103–10.CrossRefGoogle Scholar
  31. 31.
    Sela-Adler M, Said-Ahmad W, Siven O, Eckert W, Kiene RP, Amrani A. Isotopic evidence for the origin of dimethylsulfide and dimethylsulfoniopropionate-like compounds in a warm, monomictic freshwater lake. Environ Chem. 2016;13:340–51. doi: 10.1071/EN15042.CrossRefGoogle Scholar
  32. 32.
    Osborne K, Dolman AM, Burgess SC, Johns KA. Disturbance and the dynamics of coral cover on the Great Barrier Reef (1995-2009). PloS ONE. 2011;6(3):e17516. doi: 10.1371/journal.pone.0017516.CrossRefGoogle Scholar
  33. 33.
    Wild C, Huettel M, Klueter A, Kremb SG, Rasheed MYM, Jorgensen BB. Coral mucus functions as an energy carrier and particle trap in the reef ecosystem. Nature. 2004;428:66–70. doi: 10.1038/nature02344.CrossRefGoogle Scholar
  34. 34.
    Hopkins FE, Bell TG, Yang M, Suggett DJ, Steinke M. Air exposure of coral is a significant source of dimethylsulfide (DMS) to the atmosphere. Sci Rep. 2016;6(36031). doi:10.1038/srep36031.Google Scholar
  35. 35.
    Swan HB, Jones GB, Deschaseaux ESM, Eyre BD. Coral reef origins of atmospheric dimethylsulfide at Heron Island, southern Great Barrier Reef. Australia. Biogeosciences. 2017;14:1–11. doi: 10.5194/bg-14-1-2017.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Hilton B. Swan
    • 1
    • 2
    • 3
  • Elisabeth S. M. Deschaseaux
    • 1
    • 2
    • 3
  • Graham B. Jones
    • 1
    • 3
  • Bradley D. Eyre
    • 1
    • 2
  1. 1.School of Environment, Science and EngineeringSouthern Cross UniversityLismoreAustralia
  2. 2.Centre for Coastal BiogeochemistrySouthern Cross UniversityLismoreAustralia
  3. 3.Marine Ecology Research CentreSouthern Cross UniversityLismoreAustralia

Personalised recommendations