Advertisement

Analytical and Bioanalytical Chemistry

, Volume 409, Issue 16, pp 3969–3991 | Cite as

Multiplexed assay for protein quantitation in the invertebrate Gammarus fossarum by liquid chromatography coupled to tandem mass spectrometry

  • Aurore Charnot
  • Duarte Gouveia
  • Jean Armengaud
  • Christine Almunia
  • Arnaud Chaumot
  • Jérôme Lemoine
  • Olivier Geffard
  • Arnaud SalvadorEmail author
Research Paper

Abstract

A highly multiplexed liquid chromatography mass spectrometry–selected reaction monitoring (SRM)-based assay for determination of 40 potential protein biomarkers from Gammarus fossarum, an ecotoxicological relevant species, was described. The assay relies on 71 stable isotope-labeled reported peptide standards for the quantitation of proteins of interest in relation to essential physiological functions such as reproductive cycle, defense mechanism, and enzymes involved in homeostasis process and in energy. A direct linear relationship between the spiked peptide concentration and the area under the peak was clearly demonstrated in biological extracts. Precision and accuracy were determined to be between 1.1 and 21% and between 79 and 120%, respectively, depending on the selected protein in a few samples after optimization of digestion conditions. The validity of the assay was documented for several biomarkers linked with reproduction and the molting process was performed with the assessment of protein levels throughout contrasted physiological process (sex, reproductive status). This assay is easy to use, robust, sensitive, and has high-throughput capabilities. The proposed strategy may be extended to any non-model organisms relevant in environmental science.

Graphical abstract

Keywords

Multiplex Protein quantification Mass spectrometry Biomarkers Invertebrates 

Notes

Acknowledgments

We thank the French “Ministère de la recherche et de l’enseignement supérieur” for the fellowship of Aurore Charnot. We also thank the ANR program “ProteoGam” (ANR-14-CE21-0006-02) and the Regional Water Agency Rhône-Méditerranée-Corse for financial support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2017_348_MOESM1_ESM.pdf (589 kb)
ESM 1 (PDF 589 kb)

References

  1. 1.
    Trapp J, Armengaud J, Salvador A, Chaumot A, Geffard O. Next-generation proteomics: toward customized biomarkers for environmental biomonitoring. Environ Sci Technol. 2014;48:13560–72. doi: 10.1021/es501673s.CrossRefGoogle Scholar
  2. 2.
    Renuse S, Chaerkady R, Pandey A. Proteogenomics. Proteomics. 2011;11:620–30. doi: 10.1002/pmic.201000615.CrossRefGoogle Scholar
  3. 3.
    Armengaud J, Trapp J, Pible O, Geffard O, Chaumot A, Hartmann EM. Non-model organisms, a species endangered by proteogenomics. J Proteome. 2014;105:5–18. doi: 10.1016/j.jprot.2014.01.007.CrossRefGoogle Scholar
  4. 4.
    Trapp J, Geffard O, Imbert G, Gaillard J-C, Davin A-H, Chaumot A, Armengaud J. Proteogenomics of Gammarus fossarum to document the reproductive system of amphipods. Mol Cell Proteomics. 2014;13:3612–25. doi: 10.1074/mcp.M114.038851.CrossRefGoogle Scholar
  5. 5.
    Addona TA, Shi X, Keshishian H, Mani DR, Burgess M, Gillette MA, Clauser KR, Shen D, Lewis GD, Farrell LA, Fifer MA, Sabatine MS, Gerszten RE, Carr SA. A pipeline that integrates the discovery and verification of plasma protein biomarkers reveals candidate markers for cardiovascular disease. Nat Biotechnol. 2011;29:635–43. doi: 10.1038/nbt.1899.CrossRefGoogle Scholar
  6. 6.
    Anderson L. Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol Cell Proteomics. 2006;5(4):573–88. doi: 10.1074/mcp.M500331-MCP200.
  7. 7.
    Simon R, Jubeaux G, Chaumot A, Lemoine J, Geffard O, Salvador A. Mass spectrometry assay as an alternative to the enzyme-linked immunosorbent assay test for biomarker quantitation in ecotoxicology: application to vitellogenin in Crustacea (Gammarus fossarum). J Chromatogr A. 2010;1217(31):5109–15. doi: 10.1016/j.chroma.2010.06.015.
  8. 8.
    Jubeaux G, Simon R, Salvador A, Lopes C, Lacaze E, Quéau H, Chaumot A, Geffard O. Vitellogenin-like protein measurement in caged Gammarus fossarum males as a biomarker of endocrine disruptor exposure: inconclusive experience. Aquat Toxicol. 2012;122–123:9–18. doi: 10.1016/j.aquatox.2012.05.007.CrossRefGoogle Scholar
  9. 9.
    Gillette MA, Carr SA. Quantitative analysis of peptides and proteins in biomedicine by targeted mass spectrometry. Nat Methods. 2013;10:28–34. doi: 10.1038/nmeth.2309.CrossRefGoogle Scholar
  10. 10.
    Surinova S, Schiess R, Hüttenhain R, Cerciello F, Wollscheid B, Aebersold R. On the development of plasma protein biomarkers. J Proteome Res. 2011;10:5–16. doi: 10.1021/pr1008515.CrossRefGoogle Scholar
  11. 11.
    Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci U S A. 2003;100:6940–5. doi: 10.1073/pnas.0832254100.CrossRefGoogle Scholar
  12. 12.
    Simon R, Passeron S, Lemoine J, Salvador A. Hydrophilic interaction liquid chromatography as second dimension in multidimensional chromatography with an anionic trapping strategy: application to prostate-specific antigen quantification. J Chromatogr A. 2014; doi: 10.1016/j.chroma.2014.05.063.Google Scholar
  13. 13.
    Jaffuel A, Lemoine J, Aubert C, Simon R, Léonard JF, Gautier JC, Pasquier O, Salvador A. Optimization of liquid chromatography-multiple reaction monitoring cubed mass spectrometry assay for protein quantification: application to aquaporin-2 water channel in human urine. J Chromatogr A. 2013;1301:122–30. doi: 10.1016/j.chroma.2013.05.068.CrossRefGoogle Scholar
  14. 14.
    Whiteaker JR, Zhao L, Anderson L, Paulovich AG. An automated and multiplexed method for high throughput peptide immunoaffinity enrichment and multiple reaction monitoring mass spectrometry-based quantification of protein biomarkers. Mol Cell Proteomics. 2010;9:184–96. doi: 10.1074/mcp.M900254-MCP200.CrossRefGoogle Scholar
  15. 15.
    Shi T, Fillmore TL, Gao Y, Zhao R, He J, Schepmoes AA, Nicora CD, Wu C, Chambers JL, Moore RJ, Kagan J, Srivastava S, Liu AY, Rodland KD, Liu T, Camp DG, Smith RD, Qian W-J. Long-gradient separations coupled with selected reaction monitoring for highly sensitive, large scale targeted protein quantification in a single analysis. Anal Chem. 2013;85:9196–203. doi: 10.1021/ac402105s.CrossRefGoogle Scholar
  16. 16.
    Qian W-J, Kaleta DT, Petritis BO, Jiang H, Liu T, Zhang X, Mottaz HM, Varnum SM, Camp DG, Huang L, Fang X, Zhang W-W, Smith RD. Enhanced detection of low abundance human plasma proteins using a tandem IgY12-SuperMix Immunoaffinity separation strategy. Mol Cell Proteomics. 2008;7:1963–73. doi: 10.1074/mcp.M800008-MCP200.CrossRefGoogle Scholar
  17. 17.
    Depledge MH, Galloway TS. Healthy animals, healthy ecosystems. Front Ecol Environ. 2005;3:251–8. doi: 10.1890/1540-9295(2005)003[0251:HAHE]2.0.CO;2.CrossRefGoogle Scholar
  18. 18.
    Vieira CED, Costa PG, Lunardelli B, de Oliveira LF, da Costa CL, Risso WE, Primel EG, Meletti PC, Fillmann G, Bueno dos Reis Martinez C. Multiple biomarker responses in Prochilodus lineatus subjected to short-term in situ exposure to streams from agricultural areas in Southern Brazil. Sci Total Environ. 2016;542:44–56. doi: 10.1016/j.scitotenv.2015.10.071.CrossRefGoogle Scholar
  19. 19.
    Geffard O, Xuereb B, Chaumot A, Geffard A, Biagianti S, Noël C, Abbaci K, Garric J, Charmantier G, Charmantier-Daures M. Ovarian cycle and embryonic development in Gammarus fossarum: application for reproductive toxicity assessment. Environ Toxicol Chem. 2010;29:2249–59. doi: 10.1002/etc.268.CrossRefGoogle Scholar
  20. 20.
    Brun V, Masselon C, Garin J, Dupuis A. Isotope dilution strategies for absolute quantitative proteomics. J Proteome. 2009;72:740–9. doi: 10.1016/j.jprot.2009.03.007.CrossRefGoogle Scholar
  21. 21.
    Carr SA, Abbatiello SE, Ackermann BL, Borchers C, Domon B, Deutsch EW, Grant RP, Hoofnagle AN, Hüttenhain R, Koomen JM, Liebler DC, Liu T, MacLean B, Mani DR, Mansfield E, Neubert H, Paulovich AG, Reiter L, Vitek O, Aebersold R, Anderson L, Bethem R, Blonder J, Boja E, Botelho J, Boyne M, Bradshaw RA, Burlingame AL, Chan D, Keshishian H, Kuhn E, Kinsinger C, Lee JSH, Lee S-W, Moritz R, Oses-Prieto J, Rifai N, Ritchie J, Rodriguez H, Srinivas PR, Townsend RR, Van Eyk J, Whiteley G, Wiita A, Weintraub S. Targeted peptide measurements in biology and medicine: best practices for mass spectrometry-based assay development using a fit-for-purpose approach. Mol Cell Proteomics. 2014;13:907–17. doi: 10.1074/mcp.M113.036095.CrossRefGoogle Scholar
  22. 22.
    Fillâtre Y, Rondeau D, Jadas-Hécart A, Communal PY. Advantages of the scheduled selected reaction monitoring algorithm in liquid chromatography/electrospray ionization tandem mass spectrometry multi-residue analysis of 242 pesticides: a comparative approach with classical selected reaction monitoring mode. Rapid Commun Mass Spectrom. 2010;24:2453–61. doi: 10.1002/rcm.4649.CrossRefGoogle Scholar
  23. 23.
    Loziuk PL, Wang J, Li Q, Sederoff RR, Chiang VL, Muddiman DC. Understanding the role of proteolytic digestion on discovery and targeted proteomic measurements using liquid chromatography tandem mass spectrometry and design of experiments. J Proteome Res. 2013;12:5820–9. doi: 10.1021/pr4008442.CrossRefGoogle Scholar
  24. 24.
    Vial J, Jardy A. Experimental comparison of the different approaches to estimate LOD and LOQ of an HPLC method. Anal Chem. 1999;71:2672–7. doi: 10.1021/ac981179n.CrossRefGoogle Scholar
  25. 25.
    González O, Blanco ME, Iriarte G, Bartolomé L, Maguregui MI, Alonso RM. Bioanalytical chromatographic method validation according to current regulations, with a special focus on the non-well defined parameters limit of quantification, robustness and matrix effect. J Chromatogr A. 2014;1353:10–27. doi: 10.1016/j.chroma.2014.03.077.CrossRefGoogle Scholar
  26. 26.
    Mant CT, Jiang Z, Boyes BE, Hodges RS. An improved approach to hydrophilic interaction chromatography of peptides: salt gradients in the presence of high isocratic acetonitrile concentrations. J Chromatogr A. 2013;1277:15–25. doi: 10.1016/j.chroma.2012.12.044.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Aurore Charnot
    • 1
  • Duarte Gouveia
    • 2
  • Jean Armengaud
    • 3
  • Christine Almunia
    • 3
  • Arnaud Chaumot
    • 2
  • Jérôme Lemoine
    • 1
  • Olivier Geffard
    • 2
  • Arnaud Salvador
    • 1
    Email author
  1. 1.Univ Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut des Sciences AnalytiquesVilleurbanneFrance
  2. 2.Laboratoire d’écotoxicologieIRSTEA, Unité de recherché MALYVilleurbanneFrance
  3. 3.CEA-Marcoule, DRF/IBITEC-S/SPI/Li2D, Laboratory “Innovative Technologies for Detection and Diagnostics”Bagnols-sur-CèzeFrance

Personalised recommendations