Skip to main content
Log in

Bioanalysis of farnesyl pyrophosphate in human plasma by high-performance liquid chromatography coupled to triple quadrupole tandem mass spectrometry and hybrid quadrupole Orbitrap high-resolution mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The isoprenoids farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) are pivotal intermediates for cholesterol homeostasis and cell signaling in the mevalonate pathway. We developed a sensitive and selective high-performance liquid chromatography tandem triple quadrupole mass spectrometry (LC-QQQ-MS) method for FPP in human plasma without the need for a derivatization process. We optimized the sample preparation procedure to extract FPP and 13C5-FPP (as internal standard) from sample fluids using methanol. Phosphate-buffered saline was used as the surrogate matrix for the preparation of calibration curves and quality control samples. Using an XBridge C18 column (3.5 μm, 2.1 × 100-mm ID) with gradient elution composed of 10 mmol/L ammonium carbonate/ammonium hydroxide (1000:5, v/v) and acetonitrile/ammonium hydroxide (1000:5, v/v) provided the sharp peaks of FPP and 13C5-FPP in human plasma. The calibration curve ranged from 0.2 to 20 ng/mL in human plasma with acceptable intra-day and inter-day precision and accuracy. The sensitivity of this bioanalytical method was sufficient for clinical analysis. The endogenous FPP plasma concentrations in 40 human healthy volunteers ascertained by LC-QQQ-MS and high-performance liquid chromatography tandem hybrid quadrupole Orbitrap high-resolution mass spectrometry (LC-Q-Orbi-MS) were comparable. Furthermore, the endogenous GGPP in human plasma was selectively detected for the first time by LC-Q-Orbi-MS. In conclusion, a sensitive bioanalytical method for FPP in human plasma by means of LC-QQQ-MS and LC-Q-Orbi-MS was developed in this study. Taking into account the versatility of LC-Q-Orbi-MS, the simultaneous detection of FPP and GGPP may be feasible in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Goldstein JL, Brown MS. Regulation of the mevalonate pathway. Nature. 1990;343(6257):425–30.

    Article  CAS  Google Scholar 

  2. Liao JK. Isoprenoids as mediators of the biological effects of statins. J Clin Invest. 2002;110(3):285–8.

    Article  CAS  Google Scholar 

  3. Buhaescu I, Izzedine H. Mevalonate pathway: a review of clinical and therapeutical implications. Clin Biochem. 2007;40(9–10):575–84.

    Article  CAS  Google Scholar 

  4. Cole SL, Vassar R. Isoprenoids and Alzheimer’s disease: a complex relationship. Neurobiol Dis. 2006;22(2):209–22.

    Article  CAS  Google Scholar 

  5. Eckert GP, Hooff GP, Strandjord DM, Igbavboa U, Volmer DA, Muller WE, et al. Regulation of the brain isoprenoids farnesyl- and geranylgeranylpyrophosphate is altered in male Alzheimer patients. Neurobiol Dis. 2009;35(2):251–7.

    Article  CAS  Google Scholar 

  6. Fonseca AC, Resende R, Oliveira CR, Pereira CM. Cholesterol and statins in Alzheimer’s disease: current controversies. Exp Neurol. 2010;223(2):282–93.

    Article  CAS  Google Scholar 

  7. Chan KK, Oza AM, Siu LL. The statins as anticancer agents. Clin Cancer Res. 2003;9(1):10–9.

    CAS  Google Scholar 

  8. Mijimolle N, Velasco J, Dubus P, Guerra C, Weinbaum CA, Casey PJ, et al. Protein farnesyltransferase in embryogenesis, adult homeostasis, and tumor development. Cancer Cell. 2005;7(4):313–24.

    Article  CAS  Google Scholar 

  9. Swanson KM, Hohl RJ. Anti-cancer therapy: targeting the mevalonate pathway. Curr Cancer Drug Targets. 2006;6(1):15–37.

    Article  CAS  Google Scholar 

  10. Nürenberg G, Volmer DA. The analytical determination of isoprenoid intermediates from the mevalonate pathway. Anal Bioanal Chem. 2012;402(2):671–85.

    Article  Google Scholar 

  11. Saisho Y, Morimoto A, Umeda T. Determination of farnesyl pyrophosphate in dog and human plasma by high-performance liquid chromatography with fluorescence detection. Anal Biochem. 1997;252(1):89–95.

    Article  CAS  Google Scholar 

  12. Hooff GP, Volmer DA, Wood WG, Muller WE, Eckert GP. Isoprenoid quantitation in human brain tissue: a validated HPLC-fluorescence detection method for endogenous farnesyl- (FPP) and geranylgeranylpyrophosphate (GGPP). Anal Bioanal Chem. 2008;392(4):673–80.

    Article  CAS  Google Scholar 

  13. Hooff GP, Patel N, Wood WG, Muller WE, Eckert GP, Volmer DA. A rapid and sensitive assay for determining human brain levels of farnesyl- (FPP) and geranylgeranylpyrophosphate (GGPP) and transferase activities using UHPLC-MS/MS. Anal Bioanal Chem. 2010;398(4):1801–8.

    Article  CAS  Google Scholar 

  14. Henneman L, van Cruchten AG, Denis SW, Amolins MW, Placzek AT, Gibbs RA, et al. Detection of nonsterol isoprenoids by HPLC-MS/MS. Anal Biochem. 2008;383(1):18–24.

    Article  CAS  Google Scholar 

  15. Henneman L, van Cruchten AG, Kulik W, Waterham HR. Inhibition of the isoprenoid biosynthesis pathway; detection of intermediates by UPLC-MS/MS. Biochim Biophys Acta. 2011;1811(4):227–33.

    Article  CAS  Google Scholar 

  16. Ramanathan R, Jemal M, Ramagiri S, Xia YQ, Humpreys WG, Olah T, et al. It is time for a paradigm shift in drug discovery bioanalysis: from SRM to HRMS. J Mass Spectrom. 2011;46(6):595–601.

    Article  CAS  Google Scholar 

  17. Bruce SJ, Rochat B, Beguin A, Pesse B, Guessous I, Boulat O, et al. Analysis and quantification of vitamin D metabolites in serum by ultra-performance liquid chromatography coupled to tandem mass spectrometry and high-resolution mass spectrometry—a method comparison and validation. Rapid Commun Mass Spectrom. 2013;27(1):200–6.

    Article  CAS  Google Scholar 

  18. Fedorova G, Randak T, Lindberg RH, Grabic R. Comparison of the quantitative performance of a Q-Exactive high-resolution mass spectrometer with that of a triple quadrupole tandem mass spectrometer for the analysis of illicit drugs in wastewater. Rapid Commun Mass Spectrom. 2013;27(15):1751–62.

    Article  CAS  Google Scholar 

  19. Grund B, Marvin L, Rochat B. Quantitative performance of a quadrupole-orbitrap-MS in targeted LC-MS determinations of small molecules. J Pharm Biomed Anal. 2016;124:48–56.

    Article  CAS  Google Scholar 

  20. Kaufmann A, Butcher P, Maden K, Walker S, Widmer M. Comprehensive comparison of liquid chromatography selectivity as provided by two types of liquid chromatography detectors (high resolution mass spectrometry and tandem mass spectrometry): “where is the crossover point?”. Anal Chim Acta. 2010;673(1):60–72.

    Article  CAS  Google Scholar 

  21. Dahmane E, Boccard J, Csajka C, Rudaz S, Decosterd L, Genin E, et al. Quantitative monitoring of tamoxifen in human plasma extended to 40 metabolites using liquid-chromatography high-resolution mass spectrometry: new investigation capabilities for clinical pharmacology. Anal Bioanal Chem. 2014;406(11):2627–40.

    Article  CAS  Google Scholar 

  22. Leis HJ, Fauler G, Windischhofer W. Enantioselective quantitative analysis of amphetamine in human plasma by liquid chromatography/high-resolution mass spectrometry. Anal Bioanal Chem. 2014;406(18):4473–80.

    Article  CAS  Google Scholar 

  23. Fung EN, Xia YQ, Aubry AF, Zeng J, Olah T, Jemal M. Full-scan high resolution accurate mass spectrometry (HRMS) in regulated bioanalysis: LC-HRMS for the quantitation of prednisone and prednisolone in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci. 2011;879(27):2919–27.

    Article  CAS  Google Scholar 

  24. Plumb RS, Fujimoto G, Mather J, Potts WB, Rainville PD, Ellor NJ, et al. Comparison of the quantification of a therapeutic protein using nominal and accurate mass MS/MS. Bioanalysis. 2012;4(5):605–15.

    Article  CAS  Google Scholar 

  25. Morin LP, Mess JN, Garofolo F. Large-molecule quantification: sensitivity and selectivity head-to-head comparison of triple quadrupole with Q-TOF. Bioanalysis. 2013;5(10):1181–93.

    Article  CAS  Google Scholar 

  26. Mekhssian K, Mess JN, Garofolo F. Application of high-resolution MS in the quantification of a therapeutic monoclonal antibody in human plasma. Bioanalysis. 2014;6(13):1767–79.

    Article  CAS  Google Scholar 

  27. Kellie JF, Kehler JR, Szapacs ME. Application of high-resolution MS for development of peptide and large-molecule drug candidates. Bioanalysis. 2016;8(3):169–77.

    Article  CAS  Google Scholar 

  28. Jones BR, Schultz GA, Eckstein JA, Ackermann BL. Surrogate matrix and surrogate analyte approaches for definitive quantitation of endogenous biomolecules. Bioanalysis. 2012;4(19):2343–56.

    Article  CAS  Google Scholar 

  29. FDA (2013) Guidance for Industry. Bioanalytical method validation. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Veterinary Medicine (CVM). www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM292362.pdf

  30. Sugimoto H, Kakehi M, Jinno F. Bioanalytical method for the simultaneous determination of d- and l-serine in human plasma by LC/MS/MS. Anal Biochem. 2015;487:38–44.

    Article  CAS  Google Scholar 

  31. Sugimoto H, Kakehi M, Jinno F. Method development for the determination of D- and L-isomers of leucine in human plasma by high-performance liquid chromatography tandem mass spectrometry and its application to animal plasma samples. Anal Bioanal Chem. 2015;407(26):7889–98.

  32. Sugimoto H, Kakehi M, Satomi Y, Kamiguchi H, Jinno F. Method development for the determination of 24S-hydroxycholesterol in human plasma without derivatization by high-performance liquid chromatography with tandem mass spectrometry in atmospheric pressure chemical ionization mode. J Sep Sci. 2015;38(20):3516–24.

    Article  CAS  Google Scholar 

  33. Arnold ME, Booth B, King L, Ray C. Workshop Report: Crystal City VI—Bioanalytical Method Validation for Biomarkers. AAPS J. 2016;18:1366–72.

    Article  CAS  Google Scholar 

  34. Van den Eede N, Neels H, Jorens PG, Covaci A. Analysis of organophosphate flame retardant diester metabolites in human urine by liquid chromatography electrospray ionisation tandem mass spectrometry. J Chromatogr A. 2013;1303:48–53.

    Article  Google Scholar 

  35. Calvano CD, Jensen ON, Zambonin CG. Selective extraction of phospholipids from dairy products by micro-solid phase extraction based on titanium dioxide microcolumns followed by MALDI-TOF-MS analysis. Anal Bioanal Chem. 2009;394(5):1453–61.

    Article  CAS  Google Scholar 

  36. Gonzalvez A, Preinerstorfer B, Lindner W. Selective enrichment of phosphatidylcholines from food and biological matrices using metal oxides as solid-phase extraction materials prior to analysis by HPLC-ESI-MS/MS. Anal Bioanal Chem. 2010;396(8):2965–75.

    Article  CAS  Google Scholar 

  37. Tong H, Holstein SA, Hohl RJ. Simultaneous determination of farnesyl and geranylgeranyl pyrophosphate levels in cultured cells. Anal Biochem. 2005;336(1):51–9.

    Article  CAS  Google Scholar 

  38. Takami T, Fang Y, Zhou X, Jaiseng W, Ma Y, Kuno T. A genetic and pharmacological analysis of isoprenoid pathway by LC-MS/MS in fission yeast. PLoS One. 2012;7(11):e49004.

    Article  CAS  Google Scholar 

  39. Lee JW, Devanarayan V, Barrett YC, Weiner R, Allinson J, Fountain S, et al. Fit-for-purpose method development and validation for successful biomarker measurement. Pharm Res. 2006;23(2):312–28.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to Mr. Koichi Iida at Drug Metabolism and Pharmacokinetics Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, for fruitful discussion about the application of high-resolution mass spectrometry for the quantification of mevalonate-derived isoprenoid intermediates. We appreciate Mr. Shio Watanabe at the Application Group, LC-MS Chromatography & MS Department, Thermo Fisher Scientific, Japan, for his excellent analytical support with LC-Q-Orbi-MS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Sugimoto.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugimoto, H., Iguchi, M. & Jinno, F. Bioanalysis of farnesyl pyrophosphate in human plasma by high-performance liquid chromatography coupled to triple quadrupole tandem mass spectrometry and hybrid quadrupole Orbitrap high-resolution mass spectrometry. Anal Bioanal Chem 409, 3551–3560 (2017). https://doi.org/10.1007/s00216-017-0293-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0293-y

Keywords

Navigation