Skip to main content
Log in

Enhanced solid-phase recombinase polymerase amplification and electrochemical detection

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Recombinase polymerase amplification (RPA) is an elegant method for the rapid, isothermal amplification of nucleic acids. Here, we elucidate the optimal surface chemistry for rapid and efficient solid-phase RPA, which was fine-tuned in order to obtain a maximum signal-to-noise ratio, defining the optimal DNA probe density, probe-to-lateral spacer ratio (1:0, 1:1, 1:10 and 1:100) and length of a vertical spacer of the probe as well as investigating the effect of different types of lateral spacers. The use of different labelling strategies was also examined in order to reduce the number of steps required for the analysis, using biotin or horseradish peroxidase-labelled reverse primers. Optimisation of the amplification temperature used and the use of surface blocking agents were also pursued. The combination of these changes facilitated a significantly more rapid amplification and detection protocol, with a lowered limit of detection (LOD) of 1 · 10−15 M. The optimised protocol was applied to the detection of Francisella tularensis in real samples from hares and a clear correlation with PCR and qPCR results observed and the solid-phase RPA demonstrated to be capable of detecting 500 fM target DNA in real samples.

Relative size of thiolated lateral spacers tested versus the primer and the uvsx recombinase protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Piepenburg O, Williams CH, Stemple DL, Armes NA. DNA detection using recombination proteins. PLos Biol. 2006;7:1115–21.

    Google Scholar 

  2. Xu C, Li L, Jin W, Wan Y. Recombinase polymerase amplification (RPA) of CaMV-35S promoter and nos terminator for rapid detection of genetically modified crops. IJMS. 2014;10:18197–205.

    Article  Google Scholar 

  3. Silva G, Bömer M, Nkere C, Lava Kumar P, Seal SE. Rapid and specific detection of Yam mosaic virus by reverse-transcription recombinase polymerase amplification. J Virol Methods. 2015; 138–144.

  4. Boyle DS, McNerney R, Teng Low H, Leader BT, Pérez-Osorio AC, Meyer JC, et al. Rapid detection of Mycobacterium tuberculosis by recombinase polymerase amplification. PLoS ONE. 2014;8:e103091.

    Article  Google Scholar 

  5. Abd El W, El-Deeb A, El-Tholoth M, Abd El Kader H, Ahmed A, Hassan S, et al. A portable reverse transcription recombinase polymerase amplification assay for rapid detection of foot-and-mouth disease virus. PLoS ONE. 2013;8:e71642.

    Article  Google Scholar 

  6. Abd El Wahed M, Weidmann, Hufert FT. Diagnostics-in-a-Suitcase: Development of a portable and rapid assay for the detection of the emerging avian influenza A (H7N9) virus. J Clin Virol. 2015; 16–21.

  7. Teoh B-T, Sam S-S, Tan K-K, Danlami MB, Shu M-H, Johari J, et al. Early detection of dengue virus by use of reverse transcription-recombinase polymerase amplification. J Clin Microbiol. 2015;3:830–7.

    Article  Google Scholar 

  8. Crannell ZA, Castellanos-Gonzalez A, Irani A, Rohrman B, White AC, Richards-Kortum R. Nucleic acid test to diagnose Cryptosporidiosis: lab assessment in animal and patient specimens. Anal Chem. 2014;5:2565–71.

    Article  Google Scholar 

  9. Crannell ZA, Cabada MM, Castellanos-Gonzalez A, Irani A, White AC, Richards-Kortum R. Recombinase polymerase amplification-based assay to diagnose Giardia in stool samples. Am J Trop Med. 2015;3:583–7.

    Article  Google Scholar 

  10. Kersting S, Rausch V, Bier FF, von Nickisch-Rosenegk M. Rapid detection of Plasmodium falciparum with isothermal recombinase polymerase amplification and lateral flow analysis. Malar J. 2014;13:99.

    Article  Google Scholar 

  11. Tortajada-Genaro LA, Santiago-Felipe S, Amasia M, Russom A, Maquieira A. Isothermal solid-phase recombinase polymerase amplification on microfluidic digital versatile discs (DVDs). RSC Adv. 2015;38:29987–95.

    Article  Google Scholar 

  12. Santiago-Felipe S, Tortajada-Genaro LA, Morais S, Puchades R, Maquieira Á. Isothermal DNA amplification strategies for duplex microorganism detection, Food Chem. 2015; 509–515.

  13. Santiago-Felipe S, Tortajada-Genaro LA, Morais S, Puchades R, Maquieira Á. Hybridisation and detection by a disc-based method. Sensor Actuat B-Chem. 2014; 273–281.

  14. del Río JS, Yehia Adly N, Acero-Sánchez JL, Henry OYF, O’Sullivan CK. Electrochemical detection of Francisella tularensis genomic DNA using solid-phase recombinase polymerase amplification. Biosens Bioelectron. 2014; 674–678.

  15. Sakai K, Trabasso P, Moretti M, Mikami Y, Kamei K, Gonoi T. Identification of fungal pathogens by visible microarray system in combination with isothermal gene amplification. Mycopathologia. 2014;1–2:11–26.

    Article  Google Scholar 

  16. Kersting S, Rausch V, Bier FF, von Nickisch-Rosenegk M. Multiplex isothermal solid-phase recombinase polymerase amplification for the specific and fast DNA-based detection of three bacterial pathogens. Mikrochim Acta. 2014;13–14:1715–23.

    Article  Google Scholar 

  17. Shin Y, Perera AP, Kim KW, Park MK. Real-time, label-free isothermal solid-phase amplification/detection (ISAD) device for rapid detection of genetic alteration in cancers. Lab Chip. 2013;11:2106–14.

    Article  Google Scholar 

  18. Sabaté del Río J, Steylaerts T, Henry OYF, Bienstman P, Stakenborg T, Van Roy W, et al. Real-time and label-free ring-resonator monitoring of solid-phase recombinase polymerase amplification. Biosens Bioelectron. 2015;73:130–7.

    Article  Google Scholar 

  19. Shin Y, Perera AP, Tang WY, Fu DL, Liu Q, Sheng JK, et al. A rapid amplification/detection assay for analysis of Mycobacterium tuberculosis using an isothermal and silicon bio-photonic sensor complex. Biosens Bioelectron. 2015;68:390–6.

    Article  CAS  Google Scholar 

  20. Sjöstedt A. Tularemia: history, epidemiology, pathogen physiology, and clinical manifestations. Ann NY Acad Sci. 2007;1105:1–29.

    Article  Google Scholar 

  21. Euler M, Wang Y, Otto P, Tomaso H, Escudero R, Anda P, et al. Recombinase polymerase amplification assay for rapid detection of Francisella tularensis. J Clin Microbiol. 2012;7:2234–8.

    Article  Google Scholar 

  22. Sabaté del Rio J. P. Conejeras and CK O’ Sullivan, Electrochemical detection of Piscirickettsia salmonis genomic DNA from salmon samples using solid-phase recombinase polymerase amplification. Anal Bioanal Chem. 2016;408:8611–20.

    Article  Google Scholar 

Download references

Acknowledgements

This work has been carried out with partial financial support from Spanish Ministerio de Economía y Competitividad (SEASENSING BIO2014-56024-C2-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ciara K. O’Sullivan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Jonathan Sabaté del Río, Ivan Magriñà Lobato and Olena Mayboroda contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 470 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

del Río, J.S., Lobato, I.M., Mayboroda, O. et al. Enhanced solid-phase recombinase polymerase amplification and electrochemical detection. Anal Bioanal Chem 409, 3261–3269 (2017). https://doi.org/10.1007/s00216-017-0269-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0269-y

Keywords

Navigation