Analytical and Bioanalytical Chemistry

, Volume 409, Issue 12, pp 3199–3210 | Cite as

New sampling device for on-site measurement of SVOC gas-phase concentration at the emitting material surface

  • Mylène Ghislain
  • Joana Beigbeder
  • Hervé Plaisance
  • Valérie Desauziers
Research Paper


The gas-phase concentration at the material surface (y 0 ) is pointed out in the literature as a key parameter to describe semivolatile organic compound (SVOC) emissions from materials. This is an important input data in predictive models of SVOC behavior indoors and risk exposure assessment. However, most of the existing measurement methods consist of determining emission rates and not y 0 and none allow on-site sampling. Hence, a new passive sampler was developed. It consists of a glass cell that is simply placed on the material surface until reaching equilibrium between material and air; y 0 is then determined by solid-phase microextraction (SPME) sampling and GC-MS analysis. The limits of detection are at the μg/m3 level and relative standard deviations (RSD) below 10%. A variation of 11% between two sets of experiments involving different cell volumes confirmed the y 0 measurement. In addition, due to the ability of SVOCs to be sorbed on surfaces, the cell wall/air partition was assessed by determining the inner cell surface concentration of SVOCs, which is the concentration of SVOCs adsorbed on the glass, and the cell surface/air partition coefficient (K glass ). The recovery yields of the SVOCs sorbed on the cell walls are strongly compound-dependent and comprise between 2 and 93%. The K glass coefficients are found to be lower than the stainless steel/air partition coefficient (K ss ), showing that glass is suitable for the SVOC sampling. This innovative tool opens up promising perspectives in terms of identification of SVOC sources and quantification of their emissions indoors, and would significantly contribute to human exposure assessment.

Graphical Abstract

Passive sampling for the determination of SVOCs concentration at the material/air interface


Material/air interface concentration (y0SVOCs Emission cell Indoor air Organophosphate esters Flame retardants 



The authors acknowledge ADEME (French Agency of Environment and Energy Mastery) for financial support (PhD agreement ADEME TEZ13-03).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Hartmann PC, Bürgi D, Giger W. Organophosphate flame retardants and plasticizers in indoor air. Chemosphere. 2004;57:781–7.CrossRefGoogle Scholar
  2. 2.
    Weschler CJ, Nazaroff WW. Semivolatile organic compounds in indoor environments. Atmos Environ. 2008;42:9018–40.CrossRefGoogle Scholar
  3. 3.
    Marklund A, Andersson B, Haglund P. Organophosphorus flame retardants and plasticizers in air from various indoor environments. J Environ Monit. 2005;7:814–9.CrossRefGoogle Scholar
  4. 4.
    Reemtsma T, Quintana JB, Rodil R, García-López M, Rodríguez I. Organophosphorus flame retardants and plasticizers in water and air. I. Occurrence and fate. TrAC Trends Anal Chem. 2008;27:727–37.CrossRefGoogle Scholar
  5. 5.
    Saito I, Onuki A, Seto H. Indoor organophosphate and polybrominated flame retardants in Tokyo. Indoor Air. 2007;17:28–36.CrossRefGoogle Scholar
  6. 6.
    Langer S, Fredricsson M, Weschler CJ, Bekö G, Strandberg B, Remberger M, et al. Organophosphate esters in dust samples collected from Danish homes and daycare centers. Chemosphere. 2016;154:559–66.CrossRefGoogle Scholar
  7. 7.
    Cristale J, Hurtado A, Gómez-Canela C, Lacorte S. Occurrence and sources of brominated and organophosphorus flame retardants in dust from different indoor environments in Barcelona, Spain. Environ Res. 2016;149:66–76.CrossRefGoogle Scholar
  8. 8.
    Stapleton HM, Klosterhaus S, Eagle S, Fuh J, Meeker JD, Blum A, et al. Detection of organophosphate flame retardants in furniture foam and U.S. house dust. Environ Sci Technol. 2009;43:7490–5.CrossRefGoogle Scholar
  9. 9.
    Luongo G, Östman C. Organophosphate and phthalate esters in settled dust from apartment buildings in Stockholm. Indoor Air. 2015. doi: 10.1111/ina.12217.Google Scholar
  10. 10.
    Clausen PA, Hansen V, Gunnarsen L, Afshari A, Wolkoff P. Emission of di-2-ethylhexyl phthalate from PVC flooring into air and uptake in dust: emission and sorption experiments in FLEC and CLIMPAQ. Environ Sci Technol. 2004;38:2531–7.CrossRefGoogle Scholar
  11. 11.
    Staaf T, Ostman C. Organophosphate triesters in indoor environments. J Environ Monit. 2005;7:883–7.CrossRefGoogle Scholar
  12. 12.
    Wensing M, Uhde E, Salthammer T. Plastics additives in the indoor environment--flame retardants and plasticizers. Sci Total Environ. 2005;339:19–40.CrossRefGoogle Scholar
  13. 13.
    Weschler CJ, Nazaroff WW. SVOC partitioning between the gas phase and settled dust indoors. Atmos Environ. 2010;44:3609–20.CrossRefGoogle Scholar
  14. 14.
    Salthammer T, Bahadir M. Occurrence, dynamics, and reactions of organic pollutants in the indoor environment. CLEAN Soil Air Water. 2009;37:417–35.CrossRefGoogle Scholar
  15. 15.
    Beth-Hubner M, Devilliers B. Toxicological evaluation and classification of the genotoxic, carcinotoxic, reprotoxic, and sensitising potential of the tris(2-chloroethyl)phosphate. Int Arch Occup Environ Health. 1999;72:17–23.CrossRefGoogle Scholar
  16. 16.
    Doull J, Cattley R, Elcombe C, Lake BG, Swenberg J, Wilkinson C, et al. A cancer risk assessment of di(2-ethylhexyl)phthalate: application of the new U.S. EPA Risk Assessment Guidelines. Regul Toxicol Pharmacol. 1999;29:327–57.CrossRefGoogle Scholar
  17. 17.
    Willhite CC. Weight-of-evidence versus strength-of-evidence in toxicologic hazard identification: di(2-ethylhexyl)phthalate (DEHP). Toxicology. 2001;160:219–26.CrossRefGoogle Scholar
  18. 18.
    World Health Organization (1990) Tricresyl phosphate. Environ Health Criteria 110Google Scholar
  19. 19.
    Heudorf U, Mersch-Sundermann V, Angerer J. Phthalates: toxicology and exposure. Int J Hyg Environ Health. 2007;210:623–34.CrossRefGoogle Scholar
  20. 20.
    Ezechiáš M, Svobodová K, Cajthaml T. Hormonal activities of new brominated flame retardants. Chemosphere. 2012;87:820–4.CrossRefGoogle Scholar
  21. 21.
    Bourdin D, Mocho P, Desauziers V, Plaisance H. Formaldehyde emission behavior of building materials: on-site measurements and modeling approach to predict indoor air pollution. J Hazard Mater. 2014;280:164–73.CrossRefGoogle Scholar
  22. 22.
    Little JC, Weschler CJ, Nazaroff WW, Liu Z, Cohen Hubal EA. Rapid methods to estimate potential exposure to semivolatile organic compounds in the indoor environment. Environ Sci Technol. 2012;46:11171–8.CrossRefGoogle Scholar
  23. 23.
    Kemmlein S, Hahn O, Jann O. Emissions of organophosphate and brominated flame retardants from selected consumer products and building materials. Atmos Environ. 2003;37:5485–93.CrossRefGoogle Scholar
  24. 24.
    Salthammer T, Fuhrmann F, Uhde E. Flame retardants in the indoor environment – Part II: release of VOCs (triethylphosphate and halogenated degradation products) from polyurethane. Indoor Air. 2003;13:49–52.CrossRefGoogle Scholar
  25. 25.
    Rauert C, Lazarov B, Harrad S, Covaci A, Stranger M. A review of chamber experiments for determining specific emission rates and investigating migration pathways of flame retardants. Atmos Environ. 2014;82:44–55.CrossRefGoogle Scholar
  26. 26.
    Clausen PA, Liu Z, Kofoed-Sorensen V, Little J, Wolkoff P. Influence of temperature on the emission of di-(2-ethylhexyl)phthalate (DEHP) from PVC flooring in the emission cell FLEC. Environ Sci Technol. 2012;46:909–15.CrossRefGoogle Scholar
  27. 27.
    Jeon S, Kim KT, Choi K. Migration of DEHP and DINP into dust from PVC flooring products at different surface temperature. Sci Total Environ. 2016;547:441–6.CrossRefGoogle Scholar
  28. 28.
    Lyng NL, Gunnarsen L, Andersen HV, Kofoed-Sørensen V, Clausen PA. Measurement of PCB emissions from building surfaces using a novel portable emission test cell. Build Environ. 2016;101:77–84.CrossRefGoogle Scholar
  29. 29.
    Katsumata H, Murakami S, Kato S, Hoshino K, Ataka Y. Measurement of semivolatile organic compounds emitted from various types of indoor materials by thermal desorption test chamber method. Build Environ. 2008;43:378–83.CrossRefGoogle Scholar
  30. 30.
    ISO 16000-25 (2011) Indoor air – Part 25: determination of the emission of semivolatile organic compounds by building products – micro-chamber method. Int Organ StandGoogle Scholar
  31. 31.
    Xu Y, Liu Z, Park J, Clausen PA, Benning JL, Little JC. Measuring and predicting the emission rate of phthalate plasticizer from vinyl flooring in a specially-designed chamber. Environ Sci Technol. 2012;46:12534–41.CrossRefGoogle Scholar
  32. 32.
    Wu Y, Cox SS, Xu Y, Liang Y, Won D, Liu X, et al. A reference method for measuring emissions of SVOCs in small chambers. Build Environ. 2016;95:126–32.CrossRefGoogle Scholar
  33. 33.
    Liang Y, Xu Y. The influence of surface sorption and air flow rate on phthalate emissions from vinyl flooring: measurement and modeling. Atmos Environ. 2015;103:147–55.CrossRefGoogle Scholar
  34. 34.
    Cao J, Zhang X, Little JC, Zhang Y (2016) A SPME-based method for rapidly and accurately measuring the characteristic parameter for DEHP emitted from PVC floorings. Indoor AirGoogle Scholar
  35. 35.
    Nicolle J, Desauziers V, Mocho P, Ramalho O. Optimization of FLEC®-SPME for field passive sampling of VOCs emitted from solid building materials. Talanta. 2009;80:730–7.CrossRefGoogle Scholar
  36. 36.
    Desauziers V, Bourdin D, Mocho P, Plaisance H. Innovative tools and modeling methodology for impact prediction and assessment of the contribution of materials on indoor air quality. Herit Sci. 2015;3:28.CrossRefGoogle Scholar
  37. 37.
    Wu Y, Xie M, Cox SS, Marr LC, Little JC. A simple method to measure the gas-phase SVOC concentration adjacent to a material surface. Indoor Air. 2015. doi: 10.1111/ina.12270.Google Scholar
  38. 38.
    Liang Y, Xu Y. Improved method for measuring and characterizing phthalate emissions from building materials and its application to exposure assessment. Environ Sci Technol. 2014;48:4475–84. doi: 10.1021/es405809r.CrossRefGoogle Scholar
  39. 39.
    Liu Z, Ye W, Little JC. Predicting emissions of volatile and semivolatile organic compounds from building materials: a review. Build Environ. 2013;64:7–25.CrossRefGoogle Scholar
  40. 40.
    Van der Veen I, de Boer J. Phosphorus flame retardants: properties, production, environmental occurrence, toxicity, and analysis. Chemosphere. 2012;88:1119–53.CrossRefGoogle Scholar
  41. 41.
    Horrocks AR, Davies PJ, Kandola BK, Alderson A. The potential for volatile phosphorus-containing flame retardants in textile back-coatings. J Fire Sci. 2007;25:523–40.CrossRefGoogle Scholar
  42. 42.
    Dishaw LV, Powers CM, Ryde IT, Roberts SC, Seidler FJ, Slotkin TA, et al. Is the PentaBDE replacement, tris(1,3-dichloro-2-propyl) phosphate (TDCPP), a developmental neurotoxicant? Studies in PC12 cells. Toxicol Appl Pharmacol. 2011;256:281–9.CrossRefGoogle Scholar
  43. 43.
    Ni Y, Kumagai K, Yanagisawa Y. Measuring emissions of organophosphate flame retardants using a passive flux sampler. Atmos Environ. 2007;41:3235–40.CrossRefGoogle Scholar
  44. 44.
    Ali N, Dirtu AC, Van den Eede N, Goosey E, Harrad S, Neels H, et al. Occurrence of alternative flame retardants in indoor dust from New Zealand: indoor sources and human exposure assessment. Chemosphere. 2012;88:1276–82.CrossRefGoogle Scholar
  45. 45.
    US Environmental Protection Agency’s Office of Pollution Prevention and Toxics, Syracuse Research Corporation (2012) EPI suiteTMGoogle Scholar
  46. 46.
    Ghislain M, Beigbeder J, Dumazert L, Lopez-Cuesta J-M, Lounis M, Leconte S, et al. Determination of the volatile fraction of phosphorus flame retardants in cushioning foam of upholstered furniture: towards respiratory exposure assessment. Environ Monit Assess. 2016;188:576.Google Scholar
  47. 47.
    ISO 16000-11 (2006) Indoor air – Part 11: Determination of the emission of volatile organic compounds from building products and furnishing – sampling, storage of samples and preparation of test specimens. Int Organ StandGoogle Scholar
  48. 48.
    Isetun S, Nilsson U, Colmsjö A, Johansson R. Air sampling of organophosphate triesters using SPME under non-equilibrium conditions. Anal Bioanal Chem. 2004;378:1847–53.CrossRefGoogle Scholar
  49. 49.
    Isetun S, Nilsson U, Colmsjö A. Evaluation of solid-phase microextraction with PDMS for air sampling of gaseous organophosphate flame-retardants and plasticizers. Anal Bioanal Chem. 2004;380:319–24.CrossRefGoogle Scholar
  50. 50.
    Isetun S, Nilsson U. Dynamic field sampling of airborne organophosphate triesters using solid-phase microextraction under equilibrium and non-equilibrium conditions. Analyst. 2005;130:94–138.CrossRefGoogle Scholar
  51. 51.
    Ellis J, Shah M, Kubachka KM, Caruso JA. Determination of organophosphorus fire retardants and plasticizers in wastewater samples using MAE-SPME with GC-ICPMS and GC-TOFMS detection. J Environ Monit. 2007;9:1329–36.CrossRefGoogle Scholar
  52. 52.
    Aragón M, Borrull F, Marcé RM. Thermal desorption-gas chromatography-mass spectrometry method to determine phthalate and organophosphate esters from air samples. J Chromatogr A. 2013;1303:76–82.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Mylène Ghislain
    • 1
  • Joana Beigbeder
    • 1
  • Hervé Plaisance
    • 1
  • Valérie Desauziers
    • 1
  1. 1.C2MA, Ecole des Mines d’Alès, HélioparcPau Cedex 9France

Personalised recommendations