Advertisement

Analytical and Bioanalytical Chemistry

, Volume 409, Issue 11, pp 2829–2838 | Cite as

A quantitative analytical method for PIVKA-II using multiple reaction monitoring-mass spectrometry for early diagnosis of hepatocellular carcinoma

  • Areum Sohn
  • Hyunsoo Kim
  • Su Jong Yu
  • Jung-Hwan Yoon
  • Youngsoo KimEmail author
Research Paper

Abstract

Prothrombin induced by vitamin K absence-II (PIVKA-II) is an effective tumor marker for hepatocellular carcinoma (HCC). We have developed a novel targeted mass spectrometric (MS) assay for quantifying PIVKA-II in human serum. The ideal signature peptide was selected to measure PIVKA-II concentrations on a triple quadrupole (QqQ) mass spectrometer, and the chromatography gradient was optimized for the peptide separation to minimize elution interference. Using multiple reaction monitoring-mass spectrometry (MRM-MS), good linearity (R 2 = 0.9988) was obtained for PIVKA-II over a range of 3 orders. We achieved a limit of detection (LOD) of 0.45 nM (31.72 ng/mL), a limit of quantification (LOQ) of 0.93 nM (65.31 ng/mL), a lower limit of quantification (LLOQ) of 0.49 nM (34.32 ng/mL), and an upper limit of quantification (ULOQ) of 1000.00 nM (70,037.00 ng/mL). The intra-day and inter-day precisions were within ±14.96%, and the accuracy ranged from 87.66 to 114.29% for QC samples at four concentrations. Compared with an established immunoassay, the correlation (R = 0.8335) was good for the measurements of PIVKA-II concentrations. This method was successfully applied to the analysis of clinical samples for normal control (n = 50), chronic hepatitis (n = 50), liver cirrhosis (n = 50), HCC (n = 50), and recovery (n = 50) serum.

Graphical Abstract

MRM-MS assay development for determining concentration of PIVKA-II in serum and a comparison between MRM-MS assay and immunoassay with high correlation

Keywords

Multiple Reaction Monitoring (MRM) Mass spectrometry Hepatocellular carcinoma (HCC) Prothrombin induced by vitamin K absence-II (PIVKA-II) Absolute quantification 

Abbreviations

ABC

Ammonium bicarbonate

ACN

Acetonitrile

CV

Coefficient of variation

DCP (also known as PIVKA-II)

Des-gamma-carboxy prothrombin

DTT

Dithiothreitol

FA

Formic acid

Gla

Gamma-carboxy glutamic acid

Glu

Glutamic acid

HCC

Hepatocellular carcinoma

IAA

Iodoacetamid

LC

Liquid chromatography

LLOQ

Lower limit of quantification

LOD

Limit of detection

LOQ

Limit of quantification

MRM-MS

Multiple reaction monitoring-mass spectrometry

QqQ

Triple quadrupole

SIS

Stable isotope-labeled internal standard

ULOQ

Upper limit of quantification

Notes

Acknowledgements

This work was supported by the Multi-omics Research Program through the National Research Foundation and a National Research Foundation grant (No. 2011-0030740), funded by the Korean government [MSIP, Korea]. This work was also supported by the Industrial Strategic Technology Development Program (#10045352), funded by the Ministry of Knowledge Economy (MKE, Korea), and a grant from the Korea Health Technology R&D Project, funded by the Ministry of Health and Welfare (No. HI14C2640). It was also supported by the grant No. 34-2013-005 from the SK Telecom Research Fund (Seoul National University Hospital).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2017_227_MOESM1_ESM.pdf (2 mb)
ESM 1 (PDF 2056 kb)

References

  1. 1.
    Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55(2):74–108.CrossRefGoogle Scholar
  2. 2.
    Gomaa AI, Khan SA, Toledano MB, Waked I, Taylor-Robinson SD. Hepatocellular carcinoma: epidemiology, risk factors and pathogenesis. World J Gastroenterol. 2008;14(27):4300–8.CrossRefGoogle Scholar
  3. 3.
    Xiao JF, Varghese RS, Zhou B, Nezami Ranjbar MR, Zhao Y, Tsai TH, et al. LC-MS based serum metabolomics for identification of hepatocellular carcinoma biomarkers in Egyptian cohort. J Proteome Res. 2012;11(12):5914–23. doi: 10.1021/pr300673x.Google Scholar
  4. 4.
    Shah DV, Swanson JC, Suttie JW. Abnormal prothrombin in the vitamin K-deficient rat. Thromb Res. 1984;35(4):451–8.CrossRefGoogle Scholar
  5. 5.
    Beale G, Chattopadhyay D, Gray J, Stewart S, Hudson M, Day C, et al. AFP, PIVKAII, GP3, SCCA-1 and follisatin as surveillance biomarkers for hepatocellular cancer in non-alcoholic and alcoholic fatty liver disease. BMC Canc. 2008;8:200. doi: 10.1186/1471-2407-8-200.
  6. 6.
    Kasahara A, Hayashi N, Fusamoto H, Kawada Y, Imai Y, Yamamoto H, et al. Clinical evaluation of plasma des-gamma-carboxy prothrombin as a marker protein of hepatocellular carcinoma in patients with tumors of various sizes. Dig Dis Sci. 1993;38(12):2170–6.CrossRefGoogle Scholar
  7. 7.
    Shimada M, Yamashita Y, Hamatsu T, Hasegawa H, Utsunomiya T, Aishima S, et al. The role of des-gamma-carboxy prothrombin levels in hepatocellular carcinoma and liver tissues. Cancer Lett. 2000;159(1):87–94.CrossRefGoogle Scholar
  8. 8.
    Sakamoto N. NX-PVKA assay, a conventional but refined prognostic biomarker for hepatocellular carcinoma. J Gastroenterol Hepatol. 2013;28(5):755–6. doi: 10.1111/jgh.12138.CrossRefGoogle Scholar
  9. 9.
    Pote N, Cauchy F, Albuquerque M, Voitot H, Belghiti J, Castera L, et al. Performance of PIVKA-II for early hepatocellular carcinoma diagnosis and prediction of microvascular invasion. J Hepatol. 2015;62(4):848–54. doi: 10.1016/j.jhep.2014.11.005.CrossRefGoogle Scholar
  10. 10.
    Toyoda H, Kumada T, Osaki Y, Tada T, Kaneoka Y, Maeda A. Novel method to measure serum levels of des-gamma-carboxy prothrombin for hepatocellular carcinoma in patients taking warfarin: a preliminary report. Cancer Sci. 2012;103(5):921–5. doi: 10.1111/j.1349-7006.2012.02232.x.CrossRefGoogle Scholar
  11. 11.
    Friedman PA, Przysiecki CT. Vitamin K-dependent carboxylation. Int J Biochem. 1987;19(1):1–7.CrossRefGoogle Scholar
  12. 12.
    Huisse MG, Leclercq M, Belghiti J, Flejou JF, Suttie JW, Bezeaud A, et al. Mechanism of the abnormal vitamin K-dependent gamma-carboxylation process in human hepatocellular carcinomas. Cancer. 1994;74(5):1533–41.CrossRefGoogle Scholar
  13. 13.
    Blanchard RA, Furie BC, Jorgensen M, Kruger SF, Furie B. Acquired vitamin K-dependent carboxylation deficiency in liver disease. N Engl J Med. 1981;305(5):242–8. doi: 10.1056/NEJM198107303050502.CrossRefGoogle Scholar
  14. 14.
    Motohara K, Endo F, Matsuda I. Effect of vitamin K administration on acarboxy prothrombin (PIVKA-II) levels in newborns. Lancet. 1985;2(8449):242–4.CrossRefGoogle Scholar
  15. 15.
    Motohara K, Kuroki Y, Kan H, Endo F, Matsuda I. Detection of vitamin K deficiency by use of an enzyme-linked immunosorbent assay for circulating abnormal prothrombin. Pediatr Res. 1985;19(4):354–7.CrossRefGoogle Scholar
  16. 16.
    Uehara S, Gotoh K, Handa H, Tomita H, Senshuu M. Distribution of the heterogeneity of des-gamma-carboxyprothrombin in patients with hepatocellular carcinoma. J Gastroenterol Hepatol. 2005;20(10):1545–52. doi: 10.1111/j.1440-1746.2005.03899.x.CrossRefGoogle Scholar
  17. 17.
    Tameda M, Shiraki K, Sugimoto K, Ogura S, Inagaki Y, Yamamoto N, et al. Des-gamma-carboxy prothrombin ratio measured by P-11 and P-16 antibodies is a novel biomarker for hepatocellular carcinoma. Cancer Sci. 2013;104(6):725–31. doi: 10.1111/cas.12149.CrossRefGoogle Scholar
  18. 18.
    Suzuki K, Tamano M, Kuniyoshi T, Katayama Y, Takada H, Suzuki K. Positioning of novel tumor marker NX-PVKA-R in the diagnosis of hepatocellular carcinoma in comparison with PIVKA-II. Dokkyo J Med Sci. 2013;40(3):163–8.Google Scholar
  19. 19.
    Picotti P, Aebersold R. Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat Methods. 2012;9(6):555–66. doi: 10.1038/nmeth.2015.CrossRefGoogle Scholar
  20. 20.
    Kettenbach AN, Rush J, Gerber SA. Absolute quantification of protein and post-translational modification abundance with stable isotope-labeled synthetic peptides. Nat Protoc. 2011;6(2):175–86. doi: 10.1038/nprot.2010.196.CrossRefGoogle Scholar
  21. 21.
    Makawita S, Diamandis EP. The bottleneck in the cancer biomarker pipeline and protein quantification through mass spectrometry-based approaches: current strategies for candidate verification. Clin Chem. 2010;56(2):212–22. doi: 10.1373/clinchem.2009.127019.CrossRefGoogle Scholar
  22. 22.
    Kinukawa H, Shirakawa T, Yoshimura T. Epitope characterization of an anti-PIVKA-II antibody and evaluation of a fully automated chemiluminescent immunoassay for PIVKA-II. Clin Biochem. 2015. doi: 10.1016/j.clinbiochem.2015.08.017.Google Scholar
  23. 23.
    Rifai N, Gillette MA, Carr SA. Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol. 2006;24(8):971–83. doi: 10.1038/nbt1235.CrossRefGoogle Scholar
  24. 24.
    Ahn DG, Kim HJ, Kang H, Lee HW, Bae SH, Lee JH, et al. Feasibility of alpha-fetoprotein as a diagnostic tool for hepatocellular carcinoma in Korea. Korean J Intern Med. 2016;31(1):46–53. doi: 10.3904/kjim.2016.31.1.46.CrossRefGoogle Scholar
  25. 25.
    Korean Liver Cancer Study G, National Cancer Center K. Practice guidelines for management of hepatocellular carcinoma 2009. Korean J Hepatol. 2009;15(3):391–423. doi: 10.3350/kjhep.2009.15.3.391.CrossRefGoogle Scholar
  26. 26.
    Naraki T, Kohno N, Saito H, Fujimoto Y, Ohhira M, Morita T, et al. Gamma-carboxyglutamic acid content of hepatocellular carcinoma-associated des-gamma-carboxy prothrombin. Biochim Biophys Acta. 2002;1586(3):287–98.CrossRefGoogle Scholar
  27. 27.
    Hoofnagle AN, Whiteaker JR, Carr SA, Kuhn E, Liu T, Massoni SA, et al. Recommendations for the generation, quantification, storage, and handling of peptides used for mass spectrometry-based assays. Clin Chem. 2016;62(1):48–69. doi: 10.1373/clinchem.2015.250563.Google Scholar
  28. 28.
    Uehara S, Gotoh K, Handa H, Honjo K, Hirayama A. Process of carboxylation of glutamic acid residues in the gla domain of human des-gamma-carboxyprothrombin. Clin Chim Acta. 1999;289(1–2):33–44.CrossRefGoogle Scholar
  29. 29.
    Yu R, Xiang X, Tan Z, Zhou Y, Wang H, Deng G. Efficacy of PIVKA-II in prediction and early detection of hepatocellular carcinoma: a nested case-control study in Chinese patients. Sci Rep. 2016;6:35050. doi: 10.1038/srep35050.

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Areum Sohn
    • 1
    • 2
  • Hyunsoo Kim
    • 1
    • 2
    • 3
  • Su Jong Yu
    • 4
    • 5
  • Jung-Hwan Yoon
    • 4
    • 5
  • Youngsoo Kim
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of Biomedical SciencesSeoul National University College of MedicineSeoulKorea
  2. 2.Department of Biomedical EngineeringSeoul National University College of MedicineSeoulKorea
  3. 3.Institute of Medical and Biological Engineering, Medical Research CenterSeoul National University College of MedicineSeoulKorea
  4. 4.Department of Internal MedicineSeoul National University College of MedicineSeoulKorea
  5. 5.Liver Research InstituteSeoul National University College of MedicineSeoulKorea

Personalised recommendations