Advertisement

Analytical and Bioanalytical Chemistry

, Volume 408, Issue 29, pp 8559–8567 | Cite as

Highly selective solid-phase extraction sorbents for chloramphenicol determination in food and urine by ion mobility spectrometry

  • Sergio Armenta
  • Miguel de la Guardia
  • Antonio Abad-Fuentes
  • Antonio Abad-Somovilla
  • Francesc A. Esteve-TurrillasEmail author
Research Paper

Abstract

Different highly selective sorbents have been evaluated for the treatment of food and biological samples to determine chloramphenicol residues by ion mobility spectrometry (IMS). Combination of a selective solid-phase extraction (SPE) and dispersive liquid-liquid microextraction allowed a highly sensitive determination of chloramphenicol in water, milk, honey, and urine samples. The performance of selective SPE supports such as immunoaffinity chromatography (IAC) and molecular imprinted polymers (MIP) have been compared in terms of selectivity, sensitivity, trueness, precision, and reusability. Quantitative recoveries were obtained for chloramphenicol residues, ranging from 91 to 123 % for water, from 99 to 120 % for skimmed milk, and from 95 to 124 % for urine using IAC-IMS and MIP-IMS methods. Quantitative recoveries (from 88 to 104 %) were also achieved for honey samples using IAC-IMS, but low recoveries were obtained using MIP-IMS. The limit of quantification was set at 0.1 μg L−1 which is lower than the minimum required performance limit established by the EU. The proposed methodology is a simple and cost affordable alternative to chromatography methods for the highly sensitive and selective analysis of chloramphenicol residues in food and urine.

Graphical Abstract

Scheme for chloramphenicol determination by selective solid-phase extraction and ion mobility spectrometry

Keywords

Chloramphenicol Ion mobility spectrometry Immunoaffinity chromatography Molecular imprinted polymer Solid-phase extraction 

Notes

Acknowledgments

Authors gratefully acknowledge the financial support of the Ministerio de Economía y Competitividad (AGL2012-39965-C02-01-02/ALI, CTQ-2012-38635, and CTQ-2014-52841) and Generalitat Valenciana (PROMETEO-II 2014-077).

Compliance with ethical standards

This study has been approved by the appropriate ethics committee and has been performed in accordance with the ethical standards.

Conflict of interest

The authors declare no competing financial or nonfinancial interest.

Supplementary material

216_2016_9995_MOESM1_ESM.pdf (347 kb)
ESM 1 (PDF 346 kb)

References

  1. 1.
    Eiceman GA. Ion-mobility spectrometry as a fast monitor of chemical composition. TrAC Trend Anal Chem. 2002;21:259–75.CrossRefGoogle Scholar
  2. 2.
    Armenta S, Alcala M, Blanco M. A review of recent, unconventional applications of ion mobility spectrometry (IMS). Anal Chim Acta. 2011;703:114–23.CrossRefGoogle Scholar
  3. 3.
    Harrington PD, Reese ES, Rauch PJ, Hu LJ, Davis DM. Interactive self-modeling mixture analysis of ion mobility spectra. Appl Spectrosc. 1997;51:808–16.CrossRefGoogle Scholar
  4. 4.
    Asbury GR, Hill HH. Evaluation of ultrahigh resolution ion mobility spectrometry as an analytical separation device in chromatographic terms. J Microcolumn. 2000;12:172–8.CrossRefGoogle Scholar
  5. 5.
    Zamora D, Blanco M. Improving the efficiency of ion mobility spectrometry analyses by using multivariate calibration. Anal Chim Acta. 2012;726:50–6.CrossRefGoogle Scholar
  6. 6.
    Armenta S, Blanco M. Pros and cons of benzodiazepines screening in human saliva by ion mobility spectrometry. Anal Bioanal Chem. 2011;401:1935–48.CrossRefGoogle Scholar
  7. 7.
    Soleimani M, Azam M, Azimi M, Borhani K. SPE-IMS as a new analysis technique for identification and quantification of metalaxyl residue in cucumber. Ital J Food Sci. 2012;24:3–8.Google Scholar
  8. 8.
    Holopainen S, Luukkonen V, Nousiainen M, Sillanpää M. Determination of chlorophenols in water by headspace solid phase microextraction ion mobility spectrometry (HS-SPME-IMS). Talanta. 2013;114:176–82.CrossRefGoogle Scholar
  9. 9.
    Kalhor H, Ameli A, Alizadeh N. Electrochemically controlled solid-phase micro-extraction of proline using a nanostructured film of polypyrrole, and its determination by ion mobility spectrometry. Microchim Acta. 2013;180:783–9.CrossRefGoogle Scholar
  10. 10.
    Lokhnauth JK, Snow NH. Stir-bar sorptive extraction and thermal desorption-ion mobility spectrometry for the determination of trinitrotoluene and l,3,5-trinitro-l,3,5-triazine in water samples. J Chromatogr A. 2006;1105:33–8.CrossRefGoogle Scholar
  11. 11.
    Armenta S, Garrigues S, de la Guardia M, Brassier J, Alcalà M, Blanco M. Analysis of ecstasy in oral fluid by ion mobility spectrometry and infrared spectroscopy after liquid–liquid extraction. J Chromatogr A. 2015;1384:1–8.CrossRefGoogle Scholar
  12. 12.
    Márquez-Sillero I, Aguilera-Herrador E, Cárdenas S, Valcárcel M. Determination of 2,4,6-tricholoroanisole in water and wine samples by ionic liquid-based single-drop microextraction and ion mobility spectrometry. Anal Chim Acta. 2011;702:199–204.CrossRefGoogle Scholar
  13. 13.
    Saraji M, Jafari MT, Sherafatmand H. Hollow fiber-based liquid–liquid–liquid microextraction combined with electrospray ionization-ion mobility spectrometry for the determination of pentazocine in biological samples. J Chromatogr A. 2010;1217:5173–8.CrossRefGoogle Scholar
  14. 14.
    Holopainen S, Nousiainen M, Sillanpää MET, Anttalainen O. Sample-extraction methods for ion-mobility spectrometry in water analysis. TrAC Trend Anal Chem. 2012;37:124–34.CrossRefGoogle Scholar
  15. 15.
    Khalesi M, Sheikh-Zeinoddin M, Tabrizchi M. Determination of ochratoxin A in licorice root using inverse ion mobility spectrometry. Talanta. 2011;83:988–93.CrossRefGoogle Scholar
  16. 16.
    Sheibani A, Tabrizchi M, Ghaziaskar HS. Determination of aflatoxins B1 and B2 using ion mobility spectrometry. Talanta. 2008;75:233–8.Google Scholar
  17. 17.
    Armenta S, de la Guardia M, Abad-Fuentes A, Abad-Somovilla A, Esteve-Turrillas FA. Off-line coupling of multidimensional immunoaffinity chromatography and ion mobility spectrometry: a promising partnership. J Chromatogr A. 2015;1426:110–7.CrossRefGoogle Scholar
  18. 18.
    Jafari MT, Rezaei B, Zaker B. Ion mobility spectrometry as a detector for molecular imprinted polymer separation and metronidazole determination in pharmaceutical and human serum samples. Anal Chem. 2009;81:3585–91.CrossRefGoogle Scholar
  19. 19.
    Rezaei B, Jafari MT, Khademi R. Selective separation and determination of primidone in pharmaceutical and human serum samples using molecular imprinted polymer-electrospray ionization ion mobility spectrometry (MIP-ESI-IMS). Talanta. 2009;79:669–75.CrossRefGoogle Scholar
  20. 20.
    Jafari MT, Badihi Z, Jazan E. A new approach to determine salicylic acid in human urine and blood plasma based on negative electrospray ion mobility spectrometry after selective separation using a molecular imprinted polymer. Talanta. 2012;99:520–6.CrossRefGoogle Scholar
  21. 21.
    Jafari MT, Kamfirozi M, Jazan E, Ghoreishi SM. Selective extraction and analysis of pioglitazone in cow plasma using a molecularly imprinted polymer combined with ESI ion mobility spectrometry. J Sep Sci. 2014;37:573–9.CrossRefGoogle Scholar
  22. 22.
    Lu W, Li H, Meng Z, Liang X, Xue M, Wang Q, et al. Detection of nitrobenzene compounds in surface water by ion mobility spectrometry coupled with molecularly imprinted polymers. J Hazard Mat. 2014;280:588–94.CrossRefGoogle Scholar
  23. 23.
    European Food Safety Authority. Scientific opinion on chloramphenicol in food and feed. EFSA J. 2014;12–3907:1–145.Google Scholar
  24. 24.
    Food and Agriculture Organization of the United Nations/World Health Organization. Summary report of the sixty-second meeting of JECFA. FAO Food Nutrit Papers. 2004;41–6:1–12.Google Scholar
  25. 25.
    Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256:495–7.CrossRefGoogle Scholar
  26. 26.
    Esteve-Turrillas FA, Mercader JV, Agulló C, Abad-Somovilla A, Abad-Fuentes A. Development of immunoaffinity columns for pyraclostrobin extraction from fruit juices and analysis by liquid chromatography with UV detection. J Chromatogr A. 2011;1218:4902–9.CrossRefGoogle Scholar
  27. 27.
    West C, Baron G, Minet J. Detection of gunpowder stabilizers with ion mobility spectrometry. J Forensic Sci Int. 2007;166:91–101.CrossRefGoogle Scholar
  28. 28.
    Jafari MT, Khayamian T, Shaer V, Zarei N. Determination of veterinary drug residues in chicken meat using corona discharge ion mobility spectrometry. Anal Chim Acta. 2007;581:147–53.CrossRefGoogle Scholar
  29. 29.
    Picó Y. Food contaminants and residue analysis. Elsevier ISBN: 978-0-444-53019-6; 2008.Google Scholar
  30. 30.
    Esteve-Turrillas FA, Abad-Somovilla A, Quiñones-Reyes G, Agulló C, Mercader JV, Abad-Fuentes A. Monoclonal antibody-based immunoassays for cyprodinil residue analysis in QuEChERS-based fruit extracts. Food Chem. 2015;187:530–6.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Sergio Armenta
    • 1
  • Miguel de la Guardia
    • 1
  • Antonio Abad-Fuentes
    • 2
  • Antonio Abad-Somovilla
    • 3
  • Francesc A. Esteve-Turrillas
    • 1
    Email author
  1. 1.Department of Analytical ChemistryUniversity of ValenciaBurjassotSpain
  2. 2.Department of Biotechnology, Institute of Agrochemistry and Food TechnologyConsejo Superior de Investigaciones Científicas (IATA-CSIC)PaternaSpain
  3. 3.Department of Organic ChemistryUniversity of ValenciaBurjassotSpain

Personalised recommendations