Analytical and Bioanalytical Chemistry

, Volume 409, Issue 1, pp 243–250 | Cite as

Determination of azoxystrobin and chlorothalonil using a methacrylate-based polymer modified with gold nanoparticles as solid-phase extraction sorbent

  • Mónica Catalá-IcardoEmail author
  • Carmen Gómez-Benito
  • Ernesto Francisco Simó-Alfonso
  • José Manuel Herrero-MartínezEmail author
Research Paper


This paper describes a novel and sensitive method for extraction, preconcentration, and determination of two important widely used fungicides, azoxystrobin, and chlorothalonil. The developed methodology is based on solid-phase extraction (SPE) using a polymeric material functionalized with gold nanoparticles (AuNPs) as sorbent followed by high-performance liquid chromatography (HPLC) with diode array detector (DAD). Several experimental variables that affect the extraction efficiency such as the eluent volume, sample flow rate, and salt addition were optimized. Under the optimal conditions, the sorbent provided satisfactory enrichment efficiency for both fungicides, high selectivity and excellent reusability (>120 re-uses). The proposed method allowed the detection of 0.05 μg L−1 of the fungicides and gave satisfactory recoveries (75–95 %) when it was applied to drinking and environmental water samples (river, well, tap, irrigation, spring, and sea waters).


Azoxystrobin Chlorothalonil Gold nanoparticles Polymer-based material Solid-phase extraction HPLC-DAD 



This work was supported by project CTQ2014-52765-R (Ministerio de Economía y Competitividad (MINECO) of Spain and Fondo Europeo de Desarrollo Regional (FEDER)) and PROMETEO/2016/145 (Conselleria de Educación, Investigación, Cultura y Deporte, Generalitat Valenciana, Spain).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2016_9993_MOESM1_ESM.pdf (23 kb)
ESM 1 (PDF 23 kb)


  1. 1.
    Leitão S, Cerejeira MJ, Van den Brink PJ, Paulo Sousa J. Effects of azoxystrobin, chlorothalonil, and ethoprophos on the reproduction of three terrestrial invertebrates using a natural Mediterranean soil. Appl Soil Ecol. 2014;76:124–31.CrossRefGoogle Scholar
  2. 2.
    Bartlett DW, Clough JM, Godwin JR, Hall AA, Hamer M, Parr-Dobrzanski B. Review. The strobilurin fungicides. Pest Manag Sci. 2002;58:649–62.CrossRefGoogle Scholar
  3. 3.
    Xing C, Liu L, Song S, Feng M, Kuang H, Xu C. Ultrasensitive immune chromatographic assay for the simultaneous detection of five chemicals in drinking water. Biosens Bioelectron. 2015;66:445–53.CrossRefGoogle Scholar
  4. 4.
    U.S. Environmental Protection Agency (EPA). R.E.D. facts. Prevention, pesticides and toxic substances (4508C) Chlorothalonil; 1999. EPA-738-F-99-008.Google Scholar
  5. 5.
    Keinath AP, Holmes GJ, Everts KL, Egel DS, Langston Jr DB. Evaluation of combinations of chlorothalonil with azoxystrobin, harpin, and disease forecasting for control of downy mildew and gummy stem blight on melon. Crop Prot. 2007;26:83–8.CrossRefGoogle Scholar
  6. 6.
    Wong JW, Webster MG, Bezabeh DZ, Hengel MJ, Ngim KK, Krynitsky AJ, et al. Multiresidue determination of pesticides in malt beverages by capillary gas chromatography with mass spectrometry and selected ion monitoring. J Agric Food Chem. 2004;52:6361–72.CrossRefGoogle Scholar
  7. 7.
    Walorczyk S, Gnusowski B. Fast and sensitive determination of pesticide residues in vegetables using low-pressure gas chromatography with a triple quadrupole mass spectrometer. J Chromatogr A. 2006;1128:236–43.CrossRefGoogle Scholar
  8. 8.
    Leandro CC, Hancock O, Fussell RJ, Keely BJ. Quantification and screening of pesticide residues in food by gas chromatography–exact mass time-of-flight mass spectrometry. J Chromatogr A. 2007;1166:152–62.CrossRefGoogle Scholar
  9. 9.
    Ono Y, Yamagami T, Nishina T, Tobino T. Pesticide multiresidue analysis of 303 compounds using supercritical fluid extraction. Anal Sci. 2006;22:1473–6.CrossRefGoogle Scholar
  10. 10.
    Walorczyk S. Development of a multi-residue screening method for the determination of pesticides in cereals and dry animal feed using gas chromatography–triple quadrupole tandem mass spectrometry. J Chromatogr A. 2007;1165:200–12.CrossRefGoogle Scholar
  11. 11.
    Guedes TJ, Heleno FF, Amaral MO, Pinto NAVD, de Queiroz MELR, da Silva DF, et al. A simple and efficient method employing solid–liquid extraction with low-temperature partitioning for the determination/monitoring of pesticide residues in strawberries by GC/ECD. J Braz Chem Soc. 2014;25:1520–7.Google Scholar
  12. 12.
    Słowik-Borowiec M. Validation of a QuEChERS-based gas chromatographic method for multiresidue pesticide analysis in fresh peppermint including studies of matrix effects. Food Anal Methods. 2015;8:1413–24.CrossRefGoogle Scholar
  13. 13.
    El Mouden OI, Salghi R, Zougagh M, Ríos A, Chakir A, El Rachidi M, et al. Pesticide residue levels in peppers cultivated in Souss Masa valley (Morocco) after multiple applications of azoxystrobin and chlorothalonil. Int J Environ Anal Chem. 2013;93:499–510.CrossRefGoogle Scholar
  14. 14.
    Yang M, Xi X, Wu X, Lu R, Zhou W, Zhang S, et al. Vortex-assisted magnetic β-cyclodextrin/attapulgite-linked ionic liquid dispersive liquid–liquid microextraction coupled with high-performance liquid chromatography for the fast determination of four fungicides in water samples. J Chromatogr A. 2015;1381:37–47.CrossRefGoogle Scholar
  15. 15.
    Buszewski B, Szultka M. Past, present, and future of solid phase extraction: a review. Crit Rev Anal Chem. 2012;42:198–213.CrossRefGoogle Scholar
  16. 16.
    Żwir-Ferenc A, Biziuk M. Solid phase extraction technique—trends, opportunities and applications. Pol J Environ Stud. 2006;15:677–90.Google Scholar
  17. 17.
    Bielicka-Daszkiewicz K, Voelkel A. Theoretical and experimental methods of determination of the breakthrough volume of SPE sorbents. Talanta. 2009;80:614–21.CrossRefGoogle Scholar
  18. 18.
    Liu K, Aggarwal P, Lawson JS, Tolley HD, Lee ML. Organic monoliths for high-performance reversed-phase liquid chromatography. J Sep Sci. 2013;36:2767–81.CrossRefGoogle Scholar
  19. 19.
    Tasfiyati AN, Iftitah ED, Sakti SP, Sabarudin A. Evaluation of glycidyl methacrylate-based monolith functionalized with weak anion exchange moiety inside 0.5 mm i.d. column for liquid chromatographic separation of DNA. Anal Chem Res. 2016;7:9–16.CrossRefGoogle Scholar
  20. 20.
    Svec F, Lv Y. Advances and recent trends in the field of monolithic columns for chromatography. Anal Chem. 2015;87:250–73.CrossRefGoogle Scholar
  21. 21.
    Tong S, Liu S, Wang H, Jia Q. Recent advances of polymer monolithic columns functionalized with micro/nanomaterials: synthesis and application. Chromatographia. 2014;77:5–14.CrossRefGoogle Scholar
  22. 22.
    Lv Y, Maya Alejandro F, Fréchet JMJ, Svec F. Preparation of porous polymer monoliths featuring enhanced surface coverage with gold nanoparticles. J Chromatogr A. 2012;1261:121–8.CrossRefGoogle Scholar
  23. 23.
    Connolly D, Twamley B, Paull B. High-capacity gold nanoparticle functionalised polymer monoliths. Chem Commun. 2010;46:2109–11.CrossRefGoogle Scholar
  24. 24.
    Wang X, Du Y, Zhang H, Xu Y, Pan Y, Wu T, et al. Fast enrichment and ultrasensitive in-situ detection of pesticide residues on oranges with surface-enhanced Raman spectroscopy based on Au nanoparticles decorated glycidyl methacrylate-ethylene dimethacrylate material. Food Control. 2014;46:108–14.CrossRefGoogle Scholar
  25. 25.
    Vergara-Barberán M, Lerma-García MJ, Simó-Alfonso EF, Herrero-Martínez JM. Solid-phase extraction based on ground methacrylate monolith modified with gold nanoparticles for isolation of proteins. Anal Chim Acta. 2016;917:37–43.CrossRefGoogle Scholar
  26. 26.
    Prasad BB, Jauhari D, Tiwari MP. Doubly imprinted polymer nanofilm-modified electrochemical sensor for ultra-trace simultaneous analysis of glyphosate and glufosinate. Biosens Bioelectron. 2014;59:81–8.CrossRefGoogle Scholar
  27. 27.
    Tan X, Hu Q, Wu J, Li X, Li P, Yu H, et al. Electrochemical sensor based on molecularly imprinted polymer reduced graphene oxide and gold nanoparticles modified electrode for detection of carbofuran. Sensors Actuators B. 2015;220:216–21.CrossRefGoogle Scholar
  28. 28.
    Matsui J, Takayose M, Akamatsu K, Nawafune H, Tamaki K, Sugimoto N. Molecularly imprinted nanocomposites for highly sensitive SPR detection of a non-aqueous atrazine sample. Analyst. 2009;134:80–6.CrossRefGoogle Scholar
  29. 29.
    Zhao L, Zhao F, Zeng B. Synthesis of water-compatible surface-imprinted polymer via click chemistry and RAFT precipitation polymerization for highly selective and sensitive electrochemical assay of fenitrothion. Biosens Bioelectron. 2014;62:19–24.CrossRefGoogle Scholar
  30. 30.
    Pan Y, Wang X, Zhang H, Kang Y, Wu T, Du Y. Gold-nanoparticle, functionalized-porous-polymer monolith enclosed in capillary for on-column SERS detection. Anal Methods. 2015;7:1349–57.CrossRefGoogle Scholar
  31. 31.
    Zhou X, Zhou F, Liu H, Yang L, Liu J. Assembly of polymer–gold nanostructures with high reproducibility into a monolayer film SERS substrate with 5 nm gaps for pesticide trace detection. Analyst. 2013;138:5832–8.CrossRefGoogle Scholar
  32. 32.
    Poole CF. New trends in solid-phase extraction. Trends Anal Chem. 2003;22:362–73.CrossRefGoogle Scholar
  33. 33.
    Lee C, Bae SJ, Gong M, Kim K, Joo S. Surface-enhanced Raman scattering of 4,4′-dicyanobiphenyl on gold and silver nanoparticle surfaces. J Raman Spectrosc. 2002;33:429–33.CrossRefGoogle Scholar
  34. 34.
    International Conference on Harmonization (ICH guidelines). Validation of analytical procedures: text and methodology. ICH-Q2, Geneva; 1996.Google Scholar
  35. 35.
    Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Off J Eur Union L330/32. 1998.Google Scholar
  36. 36.
    Hamilton DJ, Ambrus Á, Dieterle RM, Felsot AS, Harris CA, Holland PT, et al. Regulatory limits for pesticide residues in water (IUPAC technical Report). Pure Appl Chem. 2003;75:1123–55.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Mónica Catalá-Icardo
    • 1
    Email author
  • Carmen Gómez-Benito
    • 1
  • Ernesto Francisco Simó-Alfonso
    • 2
  • José Manuel Herrero-Martínez
    • 2
    Email author
  1. 1.Research Institute for Integrated Management of Coastal AreasUniversitat Politècnica de ValènciaGrao de GandíaSpain
  2. 2.Department of Analytical ChemistryUniversitat de ValènciaBurjassotSpain

Personalised recommendations