Analytical and Bioanalytical Chemistry

, Volume 408, Issue 29, pp 8467–8481 | Cite as

Guilty by dissociation—development of gas chromatography–mass spectrometry (GC-MS) and other rapid screening methods for the analysis of 13 diphenidine-derived new psychoactive substances (NPSs)

  • Pierre M. Geyer
  • Matthew C. Hulme
  • Joseph P. B. Irving
  • Paul D. Thompson
  • Ryan N. Ashton
  • Robert J. Lee
  • Lucy Johnson
  • Jack Marron
  • Craig E. Banks
  • Oliver B. Sutcliffe
Research Paper


The prevalence of new psychoactive substances (NPSs) in forensic casework has increased prominently in recent years. This has given rise to significant legal and analytical challenges in the identification of these substances. The requirement for validated, robust and rapid testing methodologies for these compounds is obvious. This study details the analysis of 13 synthesised diphenidine derivatives encountered in casework using presumptive testing, thin layer chromatography and gas chromatography–mass spectrometry (GC-MS). Specifically, the validated GC-MS method provides, for the first time, both a general screening method and quantification of the active components for seized solid samples, both in their pure form and in the presence of common adulterants.

Graphical Abstract

Chemical synthesis and forensic analysis of 13 diphenidine-derived new psychoactive substance(s)


New psychoactive substances Characterisation (NMR, FT-IR) Diphenidine Methoxphenidine GC–MS Triage 


Compliance with ethical standards

This study did not involve research on human participants or animals.

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

216_2016_9969_MOESM1_ESM.pdf (2.1 mb)
ESM 1 (PDF 2147 kb)


  1. 1.
    Lemahieu J-L, Me A. World Drug Report 2015. United Nations Office on Drugs and Crime. 2015., accessed 29 June 2016.
  2. 2.
    Smith JP, Sutcliffe OB, Banks CE. An overview of recent developments in the analytical detection of new psychoactive substances (NPSs). Analyst. 2015;140:4932–48.CrossRefGoogle Scholar
  3. 3.
    Morris H, Wallach J. From PCP to MXE: a comprehensive review of the non-medical use of dissociative drugs. Drug Test Anal. 2014;6(7–8):614–32.CrossRefGoogle Scholar
  4. 4.
    Wallach J, Kavanagh PV, McLaughlin G, Morris N, Power JD, Elliot SP, et al. Preparation and characterisation of the “research chemical” diphenidine, its pyrrolidine analogue, and their 2,2-diphenylethyl isomers. Drug Test Anal. 2015;7(5):358–67.CrossRefGoogle Scholar
  5. 5.
    McLaughlin G, Morris N, Kavanagh PV, Power JD, O’Brien J, Talbot B, et al. Test purchase, synthesis and characterization of 2-methoxydiphenidine (MXP) and differentiation from its meta- and para-substituted isomers. Drug Test Anal. 2016;8(1):99–110.CrossRefGoogle Scholar
  6. 6.
    Reuter P, Pardo B. Can new psychoactive substances be regulated effectively? An assessment of the British Psychoactive Substances Bill. Addiction 2016; Article in Press. doi: 10.1111/add.13439.
  7. 7.
    Helander A, Beck O, Baeckberg M. Intoxications by the dissociative new psychoactive substance diphenidine and methoxphenidine. Clin Toxicol. 2015;53(5):446–53.CrossRefGoogle Scholar
  8. 8.
    Hasegawa K, Wurita A, Minakata K, Gonmori K, Nozawa H, Yamagishi I, et al. Postmortem distribution of AB-CHMINACA, 5-fluoro-AMB, and diphenidine in body fluids and solid tissues in a fatal poisoning case: usefulness of adipose tissue for detection of drugs in unchanged forms. Forensic Toxicol. 2015;33(1):45–53.CrossRefGoogle Scholar
  9. 9.
    Minakata K, Yamagishi I, Nozawa H, Hasegawa K, Gonmori K, Suzuki M, et al. Semiquantification of diphenidine is tissue sections obtained from a human cadaver in a poisoning case by direct MALDI-QTOF mass spectrometry. Forensic Toxicol. 2016;34(1):151–7.CrossRefGoogle Scholar
  10. 10.
    Kudo K, Usumoto Y, Kikura-Hanajiri R, Sameshima N, Tsuji A, Ikeda N. A fatal case of poisoning related to new cathinone designer drugs, 4-methoxy PV8, PV9 and 4-methoxy PV9, and a dissociative agent, diphenidine. Leg Med. 2016;17(5):421–6.CrossRefGoogle Scholar
  11. 11.
    Odoardi S, Romolo FS, Strano-Rossi S. A snapshot of NPS in Italy: distribution of drugs in seized materials analysed in an Italian forensic laboratory in the period 2013–2015. Forensic Sci Int. 2016;265:116–20.CrossRefGoogle Scholar
  12. 12.
    Strano-Rossi S, Odoardi S, Gregori A, Peluso G, Ripani L, Ortar G, et al. An analytical approach to the forensic identification of different classes of new psychoactive substances (NPSs) in seized materials. Rapid Commun Mass Spectrom. 2014;28(17):1904–16.CrossRefGoogle Scholar
  13. 13.
    Wurita A, Hasegawa K, Minakata K, Watanabe K, Suzuki O. A large amount of new designer drug diphenidine coexisting with a synthetic cannabinoid 5-fluoro-AB-PINACA found in a dubious herbal product. Forensic Toxicol. 2014;32(2):331–7.CrossRefGoogle Scholar
  14. 14.
    Jones LE, Stewart A, Peters KL, McNaul M, Speers SJ, Fletcher NC, et al. Infrared and Raman screening of seized novel psychoactive substances: a large scale study of >200 samples. Analyst. 2016;141(3):902–9.CrossRefGoogle Scholar
  15. 15.
    Uchiyama N, Shimokawa Y, Kawamura M, Kikura-Hanajiri R, Hakamatsuka T. Chemical analysis of a benzofuran derivative, 2-(2-ethylaminopropyl)benzofuran (2-EAPB), eight synthetic cannabinoids, five cathinone derivatives, and five other designer drugs newly detected in illegal products. Forensic Toxicol. 2014;32(2):266–81.CrossRefGoogle Scholar
  16. 16.
    Wink CSD, Michely JA, Jacobsen-Bauer A, Zapp J, Maurer Hans H. Diphenidine, a new psychoactive substance: metabolic fate elucidated with rat urine and human liver preparations and detectability in urine using GC-MS, LC-MSn, and LC-HR-MSn. Drug Test Anal. 2016; Article in Press. doi: 10.1002/dta.1946
  17. 17.
    Odoardi S, Fisichella M, Romolo FS, Strano-Rossi S. High-throughput screening for new psychoactive substances (NPS) in whole blood by DLLME extraction and UHPLC-MS/MS analysis. J Chromatogr B Analyt Technol Biomed Life Sci. 2015;1000:57–68.CrossRefGoogle Scholar
  18. 18.
    Salomone A, Gazzilli G, Di Corcia D, Gerace E, Vicenti M. Determination of cathinones and other stimulant, psychedelic, and dissociative designer drugs in real hair samples. Anal Bioanal Chem. 2016;408(8):2035–42.CrossRefGoogle Scholar
  19. 19.
    Elliot SP, Brandt SD, Wallach J, Morris H, Kavanagh PV. First reported fatalities associated with the “research chemical” 2-methoxydiphenidine. J Anal Toxicol. 2015;39(4):287–93.CrossRefGoogle Scholar
  20. 20.
    Hofer KE, Degrandi C, Muller DM, Zurrer-Hardi U, Wahl S, Rauber-Luthy C, et al. Acute toxicity associated with the recreational use of the novel dissociate psychoactive substance methoxphenidine. Clin Toxicol. 2014;52(10):1288–91.CrossRefGoogle Scholar
  21. 21.
    Fulmer GR, Miller AJM, Sherden NH, Gottlieb HE, Nudelman A, Stolz BM, et al. NMR chemical shifts of trace impurities: common laboratory solvents, organics and gases in deuterated solvents relevant to the organometallic chemist. Organometallics. 2010;29:2176–9.CrossRefGoogle Scholar
  22. 22.
    Yang F, Yu X, Liu C, Qu CX, Gong Z, Liu HD, et al. Phospho-selective mechanisms of arrestin conformations and functions revealed by unnatural amino acid incorporation and 19F-NMR. Nat Commun. 2015;6:8202.CrossRefGoogle Scholar
  23. 23.
    Le Gall E, Haurena C, Sengmany S, Martens T, Troupel M. Three-component synthesis of α-branched amines under Barbier-like conditions. J Org Chem. 2009;74:7970–3.CrossRefGoogle Scholar
  24. 24.
    Rapid testing methods of drugs of abuse. United Nations Office on Drugs and Crime. 1995., accessed 29 June 2016.
  25. 25.
    Validation of analytical procedures: text and methodology Q2(R1). International Conference on Harmonisation (ICH) of technical requirements for registration of pharmaceuticals for human use., accessed 29 June 2016.
  26. 26.
    Kovar K-A, Laudszun M. Chemistry and reaction mechanisms of rapid tests for drugs of abuse and precursor chemicals. United Nations Office on Drugs and Crime. 1989., accessed 29 June 2016.
  27. 27.
    Nagy G, Szöllősi I, Szendrei K. Colour tests for precursor chemicals of amphetamine-type substances the use of colour tests for distinguishing between ephedrine-derivatives. 2005. United Nations Office on Drugs and Crime., accessed 29 June 2016.
  28. 28.
    Nic Daeid N, Savage KA, Ramsay D, Holland C, Sutcliffe OB. Development of gas chromatography–mass spectrometry (GC-MS) and other rapid screening methods for the analysis of 16 ‘legal high’ cathinone derivatives. Sci Justice. 2014;54:22–31.CrossRefGoogle Scholar
  29. 29.
    Khreit OIG, Irving C, Schmidt E, Parkinson JA, Nic Daeid N, Sutcliffe OB. Synthesis, full chemical characterisation and development of validated methods for the quantification of the components found in the evolved “legal high” NRG-2. J Pharm Biomed Anal. 2012;5(61):122–35.CrossRefGoogle Scholar
  30. 30.
    Brandt SD, Freeman S, Sumnall HR, Measham F, Cole J. Analysis of NRG ‘legal highs’ in the UK: identification and formation of novel cathinones. Drug Test Anal. 2011;3(9):569–75.CrossRefGoogle Scholar
  31. 31.
    Smith JP, Metters JP, Khreit OIG, Sutcliffe OB, Banks CE. Forensic electrochemistry applied to the sensing of new psychoactive substances: electroanalytical sensing of synthetic cathinones and analytical validation in the quantification of seized street samples. Anal Chem. 2014;86(19):9985–92.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Pierre M. Geyer
    • 1
  • Matthew C. Hulme
    • 1
  • Joseph P. B. Irving
    • 1
  • Paul D. Thompson
    • 1
  • Ryan N. Ashton
    • 1
  • Robert J. Lee
    • 1
  • Lucy Johnson
    • 1
  • Jack Marron
    • 1
  • Craig E. Banks
    • 2
  • Oliver B. Sutcliffe
    • 1
  1. 1.Faculty of Science and Engineering, School of Science and the Environment, Division of Chemistry and Environmental ScienceManchester Metropolitan UniversityManchesterUK
  2. 2.Faculty of Science and EngineeringManchester Metropolitan UniversityManchesterUK

Personalised recommendations