Advertisement

Analytical and Bioanalytical Chemistry

, Volume 408, Issue 29, pp 8377–8391 | Cite as

Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both?

  • Andrea Käppler
  • Dieter Fischer
  • Sonja Oberbeckmann
  • Gerald Schernewski
  • Matthias Labrenz
  • Klaus-Jochen Eichhorn
  • Brigitte Voit
Research Paper

Abstract

The contamination of aquatic ecosystems with microplastics has recently been reported through many studies, and negative impacts on the aquatic biota have been described. For the chemical identification of microplastics, mainly Fourier transform infrared (FTIR) and Raman spectroscopy are used. But up to now, a critical comparison and validation of both spectroscopic methods with respect to microplastics analysis is missing. To close this knowledge gap, we investigated environmental samples by both Raman and FTIR spectroscopy. Firstly, particles and fibres >500 μm extracted from beach sediment samples were analysed by Raman and FTIR microspectroscopic single measurements. Our results illustrate that both methods are in principle suitable to identify microplastics from the environment. However, in some cases, especially for coloured particles, a combination of both spectroscopic methods is necessary for a complete and reliable characterisation of the chemical composition. Secondly, a marine sample containing particles <400 μm was investigated by Raman imaging and FTIR transmission imaging. The results were compared regarding number, size and type of detectable microplastics as well as spectra quality, measurement time and handling. We show that FTIR imaging leads to significant underestimation (about 35 %) of microplastics compared to Raman imaging, especially in the size range <20 μm. However, the measurement time of Raman imaging is considerably higher compared to FTIR imaging. In summary, we propose a further size division within the smaller microplastics fraction into 500–50 μm (rapid and reliable analysis by FTIR imaging) and into 50–1 μm (detailed and more time-consuming analysis by Raman imaging).

Graphical Abstract

Marine microplastic sample (fraction <400 μm) on a silicon filter (middle) with the corresponding Raman and IR images

Keywords

Microplastics Raman spectroscopy FTIR spectroscopy Environmental 

Notes

Acknowledgments

The authors would like to thank Leonie Buschbeck (University Rostock) and Rica Wegner (Leibniz-Institut für Ostseeforschung Warnemünde (IOW)) for their support during sampling, sample extraction and purification. Special thanks to Falk Pollehne (IOW) for providing sediment trap samples. We also thank Julia Muche (Leibniz-Institut für Polymerforschung Dresden (IPF)) for technical assistance during Raman measurements and Dr. Cordelia Zimmerer (IPF) for helpful discussion regarding FTIR imaging. We are grateful to the Leibniz Association for financial support of the SAW project ‘MikrOMIK’ (SAW-2014-IOW-2).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. 1.
    Andrady AL. Microplastics in the marine environment. Mar Pollut Bull. 2011;62:1596–605.CrossRefGoogle Scholar
  2. 2.
    Hidalgo-Ruz V, Gutow L, Thompson RC, Thiel M. Microplastics in the marine environment: a review of the methods used for identification and quantification. Environ Sci Technol. 2012;46:3060–75.CrossRefGoogle Scholar
  3. 3.
    Ivar do Sul JA, Costa MF. The present and future of microplastic pollution in the marine environment. Environ Pollut. 2014;185:352–64.CrossRefGoogle Scholar
  4. 4.
    Dris R, Imhof HK, Sanchez W, Gasperi J, Galgani F, Tassin B, et al. Beyond the ocean: contamination of freshwater ecosystems with (micro-) plastic particles. Environ Chem. 2015;12:539–50.CrossRefGoogle Scholar
  5. 5.
    Colton JB, Knapp FD, Burns BR. Plastic particles in surface waters of the Northwestern Atlantic. Science. 1974;185:491–7.CrossRefGoogle Scholar
  6. 6.
    Carpenter EJ, Anderson SJ, Harvey GR, Miklas HP, Peck BB. Polystyrene spherules in coastal waters. Science. 1972;178:749–50.CrossRefGoogle Scholar
  7. 7.
    Carpenter EJ, Smith KL. Plastics on the Sargasso sea surface. Science. 1972;175:1240–1.CrossRefGoogle Scholar
  8. 8.
    Frias JPGL, Otero V, Sobral P. Evidence of microplastics in samples of zooplankton from Portuguese coastal waters. Mar Environ Res. 2014;95:89–95.CrossRefGoogle Scholar
  9. 9.
    Isobe A, Uchida K, Tokai T, Iwasaki S. East Asian seas: a hot spot of pelagic microplastics. Mar Pollut Bull. 2015;101:618–23.CrossRefGoogle Scholar
  10. 10.
    Morét-Ferguson S, Law KL, Proskurowski G, Murphy EK, Peacock EE, Reddy CM. The size, mass, and composition of plastic debris in the western North Atlantic Ocean. Mar Pollut Bull. 2010;60:1873–8.CrossRefGoogle Scholar
  11. 11.
    Song YK, Hong SH, Jang M, Kang J-H, Kwon OY, Han GM, et al. Large accumulation of micro-sized synthetic polymer particles in the sea surface microlayer. Environ Sci Technol. 2014;48:9014–21.CrossRefGoogle Scholar
  12. 12.
    Enders K, Lenz R, Stedmon CA, Nielsen TG. Abundance, size and polymer composition of marine microplastics ≥10 μm in the Atlantic Ocean and their modelled vertical distribution. Mar Pollut Bull. 2015;100:70–81.CrossRefGoogle Scholar
  13. 13.
    Lattin GL, Moore CJ, Zellers AF, Moore SL, Weisberg SB. A comparison of neustonic plastic and zooplankton at different depths near the southern California shore. Mar Pollut Bull. 2004;49:291–4.CrossRefGoogle Scholar
  14. 14.
    Doyle MJ, Watson W, Bowlin NM, Sheavly SB. Plastic particles in coastal pelagic ecosystems of the Northeast Pacific ocean. Mar Environ Res. 2011;71:41–52.CrossRefGoogle Scholar
  15. 15.
    Browne MA, Crump P, Niven SJ, Teuten E, Tonkin A, Galloway T, et al. Accumulation of microplastic on shorelines worldwide: sources and sinks. Environ Sci Technol. 2011;45:9175–9.CrossRefGoogle Scholar
  16. 16.
    Claessens M, Van Cauwenberghe L, Vandegehuchte MB, Janssen CR. New techniques for the detection of microplastics in sediments and field collected organisms. Mar Pollut Bull. 2013;70:227–33.CrossRefGoogle Scholar
  17. 17.
    Dekiff JH, Remy D, Klasmeier J, Fries E. Occurrence and spatial distribution of microplastics in sediments from Norderney. Environ Pollut. 2014;186:248–56.CrossRefGoogle Scholar
  18. 18.
    Van Cauwenberghe L, Vanreusel A, Mees J, Janssen CR. Microplastic pollution in deep-sea sediments. Environ Pollut. 2013;182:495–9.CrossRefGoogle Scholar
  19. 19.
    Obbard RW, Sadri S, Wong YQ, Khitun AA, Baker I, Thompson RC. Global warming releases microplastic legacy frozen in Arctic Sea ice. Earth’s Futur. 2014;2:315–20.CrossRefGoogle Scholar
  20. 20.
    Free CM, Jensen OP, Mason SA, Eriksen M, Williamson NJ, Boldgiv B. High-levels of microplastic pollution in a large, remote, mountain lake. Mar Pollut Bull. 2014;85:156–63.CrossRefGoogle Scholar
  21. 21.
    Eriksen M, Mason S, Wilson S, Box C, Zellers A, Edwards W, et al. Microplastic pollution in the surface waters of the Laurentian Great Lakes. Mar Pollut Bull. 2013;77:177–82.CrossRefGoogle Scholar
  22. 22.
    Zbyszewski M, Corcoran PL. Distribution and degradation of fresh water plastic particles along the beaches of Lake Huron, Canada. Water Air Soil Pollut. 2011;220:365–72.CrossRefGoogle Scholar
  23. 23.
    Imhof HK, Ivleva NP, Schmid J, Niessner R, Laforsch C. Contamination of beach sediments of a subalpine lake with microplastic particles. Curr Biol. 2013;23:R867–8.CrossRefGoogle Scholar
  24. 24.
    Lechner A, Keckeis H, Lumesberger-Loisl F, Zens B, Krusch R, Tritthart M, et al. The Danube so colourful: a potpourri of plastic litter outnumbers fish larvae in Europe’s second largest river. Environ Pollut. 2014;188:177–81.CrossRefGoogle Scholar
  25. 25.
    Gasperi J, Dris R, Bonin T, Rocher V, Tassin B. Assessment of floating plastic debris in surface water along the Seine River. Environ Pollut. 2014;195:163–6.CrossRefGoogle Scholar
  26. 26.
    Klein S, Worch E, Knepper TP. Occurrence and spatial distribution of microplastics in river shore sediments of the Rhine-Main area in Germany. Environ Sci Technol. 2015;49:6070–6.CrossRefGoogle Scholar
  27. 27.
    Besseling E, Foekema EM, Van Franeker JA, Leopold MF, Kühn S, Bravo Rebolledo EL, et al. Microplastic in a macro filter feeder: humpback whale Megaptera novaeangliae. Mar Pollut Bull. 2015;95:248–52.CrossRefGoogle Scholar
  28. 28.
    Rummel CD, Löder MGJ, Fricke NF, Lang T, Griebeler EM, Janke M, et al. Plastic ingestion by pelagic and demersal fish from the North Sea and Baltic Sea. Mar Pollut Bull. 2016;102:134–41.CrossRefGoogle Scholar
  29. 29.
    Van Cauwenberghe L, Janssen CR. Microplastics in bivalves cultured for human consumption. Environ Pollut. 2014;193:65–70.CrossRefGoogle Scholar
  30. 30.
    Neves D, Sobral P, Ferreira JL, Pereira T. Ingestion of microplastics by commercial fish off the Portuguese coast. Mar Pollut Bull. 2015;101:119–26.CrossRefGoogle Scholar
  31. 31.
    Devriese LI, van der Meulen MD, Maes T, Bekaert K, Paul-Pont I, Frère L, et al. Microplastic contamination in brown shrimp (Crangon crangon, Linnaeus 1758) from coastal waters of the Southern North Sea and Channel area. Mar Pollut Bull. 2015;98:179–87.CrossRefGoogle Scholar
  32. 32.
    De Witte B, Devriese L, Bekaert K, Hoffman S, Vandermeersch G, Cooreman K, et al. Quality assessment of the blue mussel (Mytilus edulis): comparison between commercial and wild types. Mar Pollut Bull. 2014;85:146–55.CrossRefGoogle Scholar
  33. 33.
    Vandermeersch G, Van Cauwenberghe L, Janssen CR, Marques A, Granby K, Fait G, et al. A critical view on microplastic quantification in aquatic organisms. Environ Res. 2015;143:46–55.CrossRefGoogle Scholar
  34. 34.
    Yang D, Shi H, Li L, Li J, Jabeen K, Kolandhasamy P. Microplastic pollution in table salts from China. Environ Sci Technol. 2015;49:13622–7.CrossRefGoogle Scholar
  35. 35.
    Galgani F, Hanke G, Werner S, Oosterbaan L, Nilsson P, Fleet D, et al. Guidance on monitoring of marine litter in European seas. JRC Scientific and Policy Reports. 2013;1–128.Google Scholar
  36. 36.
    Wagner M, Scherer C, Alvarez-Muñoz D, Brennholt N, Bourrain X, Buchinger S, et al. Microplastics in freshwater ecosystems: what we know and what we need to know. Environ Sci Eur. 2014;26:12.CrossRefGoogle Scholar
  37. 37.
    Van Cauwenberghe L, Devriese L, Galgani F, Robbens J, Janssen CR. Microplastics in sediments: a review of techniques, occurrence and effects. Mar Environ Res. 2015;111:5–17.CrossRefGoogle Scholar
  38. 38.
    Liebezeit G, Dubaish F. Microplastics in beaches of the East Frisian islands Spiekeroog and Kachelotplate. Bull Environ Contam Toxicol. 2012;89:213–7.CrossRefGoogle Scholar
  39. 39.
    Lenz R, Enders K, Stedmon CA, Mackenzie DMA, Nielsen TG. A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement. Mar Pollut Bull. 2015;100:82–91.CrossRefGoogle Scholar
  40. 40.
    Song YK, Hong SH, Jang M, Han GM, Rani M, Lee J, et al. A comparison of microscopic and spectroscopic identification methods for analysis of microplastics in environmental samples. Mar Pollut Bull. 2015;93:202–9.CrossRefGoogle Scholar
  41. 41.
    Fries E, Dekiff JH, Willmeyer J, Nuelle M-T, Ebert M, Remy D. Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy. Environ Sci Process Impacts. 2013;15:1949–56.CrossRefGoogle Scholar
  42. 42.
    Dümichen E, Barthel A-K, Braun U, Bannick CG, Brand K, Jekel M, et al. Analysis of polyethylene microplastics in environmental samples, using a thermal decomposition method. Water Res. 2015;85:451–7.CrossRefGoogle Scholar
  43. 43.
    Hintersteiner I, Himmelsbach M, Buchberger WW. Characterization and quantitation of polyolefin microplastics in personal-care products using high-temperature gel-permeation chromatography. Anal Bioanal Chem. 2015;407:1253–9.CrossRefGoogle Scholar
  44. 44.
    Everall NJ, Chalmer JM, Griffiths PR. Vibrational spectroscopy of polymers: principles and practice. Weinheim: Wiley-VCH; 2007.Google Scholar
  45. 45.
    Koenig JL. Spectroscopy of polymers, ACS Professional Reference Book. Washington, DC: American Chemical Society; 1992.Google Scholar
  46. 46.
    Imhof HK, Laforsch C, Wiesheu AC, Schmid J, Anger PM, Niessner R, et al. Pigments and plastic in limnetic ecosystems: a qualitative and quantitative study on microparticles of different size classes. Water Res. 2016;98:64–74.CrossRefGoogle Scholar
  47. 47.
    Löder MGJ, Kuczera M, Mintenig S, Lorenz C, Gerdts G. FPA-based micro-FTIR imaging for the analysis of microplastics in environmental samples. Environ Chem. 2015;12:563–581.Google Scholar
  48. 48.
    Tagg AS, Sapp M, Harrison JP, Ojeda JJ. Identification and quantification of microplastics in wastewater using focal plane array-based reflectance micro-FT-IR imaging. Anal Chem. 2015;87:6032–40.CrossRefGoogle Scholar
  49. 49.
    Käppler A, Windrich F, Löder MGJ, Malanin M, Fischer D, Labrenz M, et al. Identification of microplastics by FTIR and Raman microscopy: a novel silicon filter substrate opens the important spectral range below 1300 cm−1 for FTIR transmission measurements. Anal Bioanal Chem. 2015;407:6791–801.CrossRefGoogle Scholar
  50. 50.
    Fischer D, Käppler A, Eichhorn K-J. Identification of microplastics in the marine environment by Raman microspectroscopy and imaging. Am Lab. 2015;47:32–4.Google Scholar
  51. 51.
    Horiba Jobin Yvon, Palaiseau. Raman ParticleFinder—automated particle location and Raman analysis with LabSpec 6. 2012. http://www.horiba.com/fileadmin/uploads/Scientific/Documents/Raman/SO-TN05_-_ParticleFinder_with_LabSpec6.pdf. Accessed 4 Jul 2016.
  52. 52.
    rap.ID particle systems GmbH, Berlin. Single particle explorer. http://www.rap-id.com/media/files/SPE_raman_LIBS_ENG_web.pdf. Accessed 4 Jul 2016.
  53. 53.
    Robertson I. Detection and identification of microplastic particles in cosmetic formulations using IR microscopy. PerkinElmer, Waltham. 2015. http://www.perkinelmer.de/lab-solutions/resources/docs/APP_Detection-Identification-Microplastic-Particles-Cosmetics-012079_01.pdf. Accessed 5 Jul 2016.
  54. 54.
    Imhof HK, Schmid J, Niessner R, Ivleva NP, Laforsch C. A novel, highly efficient method for the separation and quantification of plastic particles in sediments of aquatic. Limnol Oceanogr Methods. 2012;10:524–37.CrossRefGoogle Scholar
  55. 55.
    Mark JE. Polymer data handbook. Oxford: Oxford University Press; 1999.Google Scholar
  56. 56.
    Balachandran U, Eror NG. Raman spectra of titanium dioxide. J Solid State Chem. 1982;42:276–82.CrossRefGoogle Scholar
  57. 57.
    Gall MJ, Hendra PJ, Peacock CJ, Cudby MEA, Willis HA. The laser-Raman spectrum of polyethylene. The assignment of the spectrum to fundamental modes of vibration. Spectrochim Acta. 1972;28:1485–96.CrossRefGoogle Scholar
  58. 58.
    Schulte F, Brzezinka K-W, Lutzenberger K, Stege H, Panne U. Raman spectroscopy of synthetic organic pigments used in 20th century works of art. J Raman Spectrosc. 2008;39:1455–63.CrossRefGoogle Scholar
  59. 59.
    Stromberg RR, Straus S, Achhammer BG. Infrared spectra of thermally degraded poly(vinyl-chloride). J Res Natl Bur Stand. 1958;60:147–52.CrossRefGoogle Scholar
  60. 60.
    Siesler HW, Salzer R. Infrared and Raman spectroscopic imaging. Wiley: Weinheim; 2009.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Andrea Käppler
    • 1
    • 2
  • Dieter Fischer
    • 1
  • Sonja Oberbeckmann
    • 3
  • Gerald Schernewski
    • 3
  • Matthias Labrenz
    • 3
  • Klaus-Jochen Eichhorn
    • 1
  • Brigitte Voit
    • 1
    • 2
  1. 1.Leibniz-Institut für Polymerforschung Dresden e.V.DresdenGermany
  2. 2.Organische Chemie der PolymereTechnische Universität DresdenDresdenGermany
  3. 3.Leibniz-Institut für Ostseeforschung WarnemündeRostockGermany

Personalised recommendations