Analytical and Bioanalytical Chemistry

, Volume 409, Issue 2, pp 579–588 | Cite as

Isotope-targeted glycoproteomics (IsoTaG) analysis of sialylated N- and O-glycopeptides on an Orbitrap Fusion Tribrid using azido and alkynyl sugars

  • Christina M. Woo
  • Alejandra Felix
  • Lichao Zhang
  • Joshua E. Elias
  • Carolyn R. BertozziEmail author
Research Paper
Part of the following topical collections:
  1. Glycomics, Glycoproteomics and Allied Topics


Protein glycosylation is a post-translational modification (PTM) responsible for many aspects of proteomic diversity and biological regulation. Assignment of intact glycan structures to specific protein attachment sites is a critical step towards elucidating the function encoded in the glycome. Previously, we developed isotope-targeted glycoproteomics (IsoTaG) as a mass-independent mass spectrometry method to characterize azide-labeled intact glycopeptides from complex proteomes. Here, we extend the IsoTaG approach with the use of alkynyl sugars as metabolic labels and employ new probes in analysis of the sialylated glycoproteome from PC-3 cells. Using an Orbitrap Fusion Tribrid mass spectrometer, we identified 699 intact glycopeptides from 192 glycoproteins. These intact glycopeptides represent a total of eight sialylated glycan structures across 126 N- and 576 O-glycopeptides. IsoTaG is therefore an effective platform for identification of intact glycopeptides labeled by alkynyl or azido sugars and will facilitate further studies of the glycoproteome.


Glycoproteomics Chemical proteomics LC-MS/MS Metabolic labeling Sialic acid 



Financial support from the US National Institutes of Health (CA200423, C.R.B.), Jane Coffin Childs Memorial Fund (C.M.W.), Burroughs Wellcome Fund Career Awards at the Scientific Interface (C.M.W.), Stanford Undergraduate Advising and Research Student Grant (A.F.), the W.M. Keck Foundation Medical Research Program (J.E.E.), and the Bill and Melinda Gates Foundation (J.E.E.) are gratefully acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2016_9934_MOESM1_ESM.pdf (3.3 mb)
ESM 1 (PDF 3393 kb)
216_2016_9934_MOESM2_ESM.xlsx (571 kb)
ESM 2 (XLSX 571 kb)


  1. 1.
    Amon R, Reuven EM, Leviatan Ben-Arye S, Padler-Karavani V. Glycans in immune recognition and response. Carbohydr Res. 2014;389:115.CrossRefGoogle Scholar
  2. 2.
    Adamczyk B, Tharmalingam T, Rudd PM. Glycans as cancer biomarkers. Biochim Biophys Acta. 2012;1820(9):1347.CrossRefGoogle Scholar
  3. 3.
    Song E, Hu Y, Hussein A, Yu C-Y, Tang H, Mechref Y. Characterization of the glycosylation site of human PSA prompted by missense mutation using LC–MS/MS. J Proteome Res. 2015;14(7):2872.CrossRefGoogle Scholar
  4. 4.
    Paszek MJ, DuFort CC, Rossier O, Bainer R, Mouw JK, Godula K, et al. The cancer glycocalyx mechanically primes integrin-mediated growth and survival. Nature. 2014;511:319.CrossRefGoogle Scholar
  5. 5.
    Brown JR, Fuster MM, Li R, Varki N, Glass CA, Esko JD. A disaccharide-based inhibitor of glycosylation attenuates metastatic tumor cell dissemination. Clin Cancer Res. 2006;12(9):2894.CrossRefGoogle Scholar
  6. 6.
    Samraj AN, Pearce OMT, Läubli H, Crittenden AN, Bergfeld AK, Banda K, et al. A red meat-derived glycan promotes inflammation and cancer progression. Proc Natl Acad Sci U S A. 2015;112(2):542.CrossRefGoogle Scholar
  7. 7.
    Hudak JE, Canham SM, Bertozzi CR. Glycocalyx engineering reveals a Siglec-based mechanism for NK cell immunoevasion. Nat Chem Biol. 2014;10(1):69.CrossRefGoogle Scholar
  8. 8.
    Xiao H, Woods EC, Vukojicic P, Bertozzi CR, Precision glycocalyx editing as a strategy for cancer immunotherapy. Proc Natl Acad Sci in press, 2016.Google Scholar
  9. 9.
    Miyoshi E, Moriwaki K, Nakagawa T. Biological function of fucosylation in cancer biology. J Biochem. 2008;143(6):725.CrossRefGoogle Scholar
  10. 10.
    Okeley NM, Alley SC, Anderson ME, Boursalian TE, Burke PJ, Emmerton KM, et al. Development of orally active inhibitors of protein and cellular fucosylation. Proc Natl Acad Sci U S A. 2013;110(14):5404.CrossRefGoogle Scholar
  11. 11.
    Liener I, The lectins: properties, functions, and applications in biology and medicine. Elsevier, 1986.Google Scholar
  12. 12.
    Belardi B, Bertozzi CR. Chemical lectinology: Tools for probing the ligands and dynamics of mammalian lectins in vivo. Chem Biol. 2015;22(8):983.CrossRefGoogle Scholar
  13. 13.
    Brooks SA. Strategies for analysis of the glycosylation of proteins: current status and future perspectives. Mol Biotechnol. 2009;43(1):76.CrossRefGoogle Scholar
  14. 14.
    Chen C-C, Su W-C, Huang B-Y, Chen Y-J, Tai H-C, Obena RP. Interaction modes and approaches to glycopeptide and glycoprotein enrichment. Analyst (Cambridge, U K). 2014;139(4):688.CrossRefGoogle Scholar
  15. 15.
    Zhang H, Li XJ, Martin DB, Aebersold R. Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol. 2003;21(6):660.CrossRefGoogle Scholar
  16. 16.
    Vosseller K, Trinidad JC, Chalkley RJ, Specht CG, Thalhammer A, Lynn AJ, et al. O-linked N-acetylglucosamine proteomics of postsynaptic density preparations using lectin weak affinity chromatography and mass spectrometry. Mol Cell Proteomics. 2006;5(5):923.CrossRefGoogle Scholar
  17. 17.
    Clark PM, Dweck JF, Mason DE, Hart CR, Buck SB, Peters EC, et al. Direct in-gel fluorescence detection and cellular imaging of O-GlcNAc-modified proteins. J Am Chem Soc. 2008;130(35):11576.CrossRefGoogle Scholar
  18. 18.
    Saxon E, Bertozzi CR. Cell surface engineering by a modified Staudinger reaction. Science. 2000;287(5460):2007.CrossRefGoogle Scholar
  19. 19.
    Thaysen-Andersen M, Packer NH, Schulz BL. Maturing glycoproteomics technologies provide unique structural insights into the N-glycoproteome and its regulation in health and disease. Mol Cell Proteomics. 2016;15(6):1773.CrossRefGoogle Scholar
  20. 20.
    Chandler KB, Costello CE. Glycomics and glycoproteomics of membrane proteins and cell-surface receptors: present trends and future opportunities. Electrophoresis. 2016;37(11):1407.CrossRefGoogle Scholar
  21. 21.
    Tarentino AL, Gomez CM, Plummer TH. Deglycosylation of asparagine-linked glycans by peptide:N-glycosidase F. Biochemistry. 1985;24(17):4665.CrossRefGoogle Scholar
  22. 22.
    Zielinska DF, Gnad F, Wiśniewski JR, Mann M. Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell. 2010;141(5):897.CrossRefGoogle Scholar
  23. 23.
    Song X, Ju H, Lasanajak Y, Kudelka MR, Smith DF, Cummings RD. Oxidative release of natural glycans for functional glycomics. Nat Meth. 2016;13(6):528.CrossRefGoogle Scholar
  24. 24.
    Alfaro JF, Gong C-X, Monroe ME, Aldrich JT, Clauss TRW, Purvine SO, et al. Tandem mass spectrometry identifies many mouse brain O-GlcNAcylated proteins including EGF domain-specific O-GlcNAc transferase targets. Proc Natl Acad Sci U S A. 2012;109(19):7280.CrossRefGoogle Scholar
  25. 25.
    Nilsson J, Ruetschi U, Halim A, Hesse C, Carlsohn E, Brinkmalm G, et al. Enrichment of glycopeptides for glycan structure and attachment site identification. Nat Meth. 2009;6(11):809.CrossRefGoogle Scholar
  26. 26.
    Steentoft C, Vakhrushev SY, Vester-Christensen MB, Schjoldager KT, Kong Y, Bennett EP, et al. Mining the O-glycoproteome using zinc-finger nuclease-glycoengineered SimpleCell lines. Nat Meth. 2011;8(11):977.CrossRefGoogle Scholar
  27. 27.
    Steentoft C, Vakhrushev SY, Joshi HJ, Kong Y, Vester-Christensen MB, Schjoldager KT, et al. Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J. 2013;32(10):1478.CrossRefGoogle Scholar
  28. 28.
    Zhao P, Viner R, Teo CF, Boons G-J, Horn D, Wells L. Combining high-energy C-trap dissociation and electron transfer dissociation for protein O-GlcNAc modification site assignment. J Proteome Res. 2011;10(9):4088.CrossRefGoogle Scholar
  29. 29.
    Wu SW, Pu TH, Viner R, Khoo KH. Novel LC-MS(2) product dependent parallel data acquisition function and data analysis workflow for sequencing and identification of intact glycopeptides. Anal Chem. 2014;86(11):5478.CrossRefGoogle Scholar
  30. 30.
    Shah P, Wang X, Yang W, Toghi Eshghi S, Sun S, Hoti N, et al. Integrated proteomic and glycoproteomic analyses of prostate cancer cells reveal glycoprotein alteration in protein abundance and glycosylation. Mol Cell Proteomics. 2015;14(10):2753.CrossRefGoogle Scholar
  31. 31.
    Singh C, Zampronio CG, Creese AJ, Cooper HJ. Higher energy collision dissociation (HCD) product ion-triggered electron transfer dissociation (ETD) mass spectrometry for the analysis of N-linked glycoproteins. J Proteome Res. 2012;11(9):4517.CrossRefGoogle Scholar
  32. 32.
    Parker BL, Thaysen-Andersen M, Solis N, Scott NE, Larsen MR, Graham ME, et al. Site-specific glycan-peptide analysis for determination of N-glycoproteome heterogeneity. J Proteome Res. 2013;12(12):5791.CrossRefGoogle Scholar
  33. 33.
    He L, Xin L, Shan B, Lajoie GA, Ma B. GlycoMaster DB: software to assist the automated identification of N-linked glycopeptides by tandem mass spectrometry. J Proteome Res. 2014;13(9):3881.CrossRefGoogle Scholar
  34. 34.
    Hua S, Nwosu CC, Strum JS, Seipert RR, An HJ, Zivkovic AM, et al. Site-specific protein glycosylation analysis with glycan isomer differentiation. Anal Bioanal Chem. 2012;403(5):1291.CrossRefGoogle Scholar
  35. 35.
    Toghi Eshghi S, Shah P, Yang W, Li X, Zhang H. GPQuest: a spectral library matching algorithm for site-specific assignment of tandem mass spectra to intact N-glycopeptides. Anal Chem. 2015;87(10):5181.CrossRefGoogle Scholar
  36. 36.
    Woo CM, Iavarone AT, Spiciarich DR, Palaniappan KK, Bertozzi CR. Isotope-targeted glycoproteomics (IsoTaG): a mass-independent platform for intact N- and O-glycopeptide discovery and analysis. Nat Meth. 2015;12(6):561.CrossRefGoogle Scholar
  37. 37.
    Laughlin ST, Baskin JM, Amacher SL, Bertozzi CR. In vivo imaging of membrane-associated glycans in developing zebrafish. Science. 2008;320:664.CrossRefGoogle Scholar
  38. 38.
    Chang PV, Chen X, Smyrniotis C, Xenakis A, Hu T, Bertozzi CR, et al. Metabolic labeling of sialic acids in living animals with alkynyl sugars. Angew Chem Int Ed. 2009;48(22):4030.CrossRefGoogle Scholar
  39. 39.
    Hubbard SC, Boyce M, McVaugh CT, Peehl DM, Bertozzi CR. Cell surface glycoproteomic analysis of prostate cancer-derived PC-3 cells. Bioorg Med Chem Lett. 2011;21:4945.CrossRefGoogle Scholar
  40. 40.
    Hsu TL, Hanson SR, Kishikawa K, Wang SK, Sawa M, Wong CH. Alkynyl sugar analogs for the labeling and visualization of glycoconjugates in cells. Proc Natl Acad Sci U S A. 2007;104(8):2614.CrossRefGoogle Scholar
  41. 41.
    Chuh KN, Zaro BW, Piller F, Piller V, Pratt MR. Changes in metabolic chemical reporter structure yield a selective probe of O-GlcNAc modification. J Am Chem Soc. 2014;136(35):12283.CrossRefGoogle Scholar
  42. 42.
    Pangborn AB, Giardello MA, Grubbs RH, Rosen RK, Timmers FJ. Safe and convenient procedure for solvent purification. Organometallics. 1996;15(5):1518.CrossRefGoogle Scholar
  43. 43.
    Lee PJJ, Compton BJ, Destructible surfactants and uses thereof. USA Patent 2007.Google Scholar
  44. 44.
    Wang W, Hong S, Tran A, Jiang H, Triano R, Liu Y, et al. Sulfated ligands for the copper(I)-catalyzed azide–alkyne cycloaddition. Chem Asian J. 2011;6(10):2796.CrossRefGoogle Scholar
  45. 45.
    Prescher JA, Dube DH, Bertozzi CR. Chemical remodelling of cell surfaces in living animals. Nature. 2004;430:873.CrossRefGoogle Scholar
  46. 46.
    Bern M, Kil YJ, Becker C, Byonic: advanced peptide and protein identification software. Curr Protoc Bioinformatics Chapter 13:Unit13 20, 2012.Google Scholar
  47. 47.
    Vizcaino JA, Csordas A, del Toro N, Dianes JA, Griss J, Lavidas I, et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 2016;44(D1):D447.CrossRefGoogle Scholar
  48. 48.
    Szychowski J, Mahdavi A, Hodas JJL, Bagert JD, Ngo JT, Landgraf P, et al. Cleavable biotin probes for labeling of biomolecules via azide–alkyne cycloaddition. J Am Chem Soc. 2010;132:18351.CrossRefGoogle Scholar
  49. 49.
    Palaniappan KK, Pitcher AA, Smart BP, Spiciarich DR, Iavarone AT, Bertozzi CR. Isotopic signature transfer and mass pattern prediction (IsoStamp): an enabling technique for chemically-directed proteomics. ACS Chem Biol. 2011;6(8):829.CrossRefGoogle Scholar
  50. 50.
    Woo CM, Bertozzi CR. Isotope targeted glycoproteomics (IsoTaG) to characterize intact, metabolically labeled glycopeptides from complex proteomes. Curr Protoc Chem Biol. 2016;8(1):59.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Christina M. Woo
    • 1
  • Alejandra Felix
    • 1
  • Lichao Zhang
    • 2
  • Joshua E. Elias
    • 2
  • Carolyn R. Bertozzi
    • 1
    • 3
    Email author
  1. 1.Department of ChemistryStanford UniversityStanfordUSA
  2. 2.Chemical and Systems BiologyStanford UniversityStanfordUSA
  3. 3.Howard Hughes Medical InstituteStanford UniversityStanfordUSA

Personalised recommendations