Advertisement

Analytical and Bioanalytical Chemistry

, Volume 408, Issue 28, pp 8065–8078 | Cite as

Metabolite profiling in Trigonella seeds via UPLC-MS and GC-MS analyzed using multivariate data analyses

  • Mohamed A. FaragEmail author
  • Dalia M. Rasheed
  • Matthias Kropf
  • Andreas G. Heiss
Research Paper

Abstract

Trigonella foenum-graecum is a plant of considerable value for its nutritive composition as well as medicinal effects. This study aims to examine Trigonella seeds using a metabolome-based ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) in parallel to gas chromatography-mass spectrometry (GC-MS) coupled with multivariate data analyses. The metabolomic differences of seeds derived from three Trigonella species, i.e., T. caerulea, T. corniculata, and T. foenum-graecum, were assessed. Under specified conditions, we were able to identify 93 metabolites including 5 peptides, 2 phenolic acids, 22 C/O-flavonoid conjugates, 26 saponins, and 9 fatty acids using UPLC-MS. Several novel dipeptides, saponins, and flavonoids were found in Trigonella herein for the first time. Samples were classified via unsupervised principal component analysis (PCA) followed by supervised orthogonal projection to latent structures-discriminant analysis (OPLS-DA). A distinct separation among the investigated Trigonella species was revealed, with T. foenum-graecum samples found most enriched in apigenin-C-glycosides, viz. vicenins 1/3 and 2, compared to the other two species. In contrast to UPLC-MS, GC-MS was less efficient to classify specimens, with differences among specimens mostly attributed to fatty acyl esters. GC-MS analysis of Trigonella seed extracts led to the identification of 91 metabolites belonging mostly to fatty acyl esters, free fatty acids followed by organic acids, sugars, and amino acids. This study presents the first report on primary and secondary metabolite compositional differences among Trigonella seeds via a metabolomics approach and reveals that, among the species examined, the official T. foenum-graecum presents a better source of Trigonella secondary bioactive metabolites.

Keywords

Trigonella Metabolomics C-flavonoids Chemometrics UPLC-MS GC-MS 

Notes

Acknowledgements

We are grateful for Dr. Andrea Porzel, Leibniz institute of plant biochemistry, Germany for assistance in running the NMR spectra and Ms. Asmaa Otify for reviewing the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2016_9910_MOESM1_ESM.pdf (1.8 mb)
ESM 1 (PDF 1.81 Mb)

References

  1. 1.
    Damania AB, Valkoun J, Willcox G, Qualset CO. The origins of agriculture and crop domestication the Harlan symposium. Crop science. Aleppo: ICARDA; 1998.Google Scholar
  2. 2.
    Stika H-P. Early Neolithic agriculture in Ambrona, Provincia Soria, Central Spain. Veg His Archaeobotany. 2005;14(3):189–97.CrossRefGoogle Scholar
  3. 3.
    Willcox G, Fornite S, Herveux L. Early Holocene cultivation before domestication in northern Syria. Veg His Archaeobotany. 2007;17(3):313–25. doi: 10.1007/s00334-007-0121-y.CrossRefGoogle Scholar
  4. 4.
    Hepper FN. Pharaoh’s flowers: the botanical treasures of Tutankhamun. Endeavor: KWS Pub; 2009.Google Scholar
  5. 5.
    Parthasarathy VA, Chempakam B, Zachariah TJ. Chemistry of spices. Singapore: CABI Pub; 2008. p. 242.CrossRefGoogle Scholar
  6. 6.
    Steele KP, Ickert-Bond SM, Zarre S, Wojciechowski MF. Phylogeny and character evolution in Medicago (Leguminosae): evidence from analyses of plastid trnK/matK and nuclear GA3ox1 sequences. Am J Bot. 2010;97(7):1142–55.Google Scholar
  7. 7.
    Ertuğ F. An ethnobotanical study in Central Anatolia (Turkey). Econ Bot. 2000;54(2):155–82. doi: 10.1007/bf02907820.CrossRefGoogle Scholar
  8. 8.
    Wiersema JH, Leon B. World economic plants: a standard reference. USA: CRC press; 2013.Google Scholar
  9. 9.
    Petropoulos GA. Fenugreek: the genus Trigonella. Boca Ranton: CRC Press; 2003.Google Scholar
  10. 10.
    Vidyashankar GK. Fenugreek: an analysis from trade and commerce perspective. American Journal of Social Issues and Humanities. 2014(Mar/Apr):162–70.Google Scholar
  11. 11.
    Srinivasan K. Fenugreek (Trigonella foenum-graecum): a review of health beneficial physiological effects. Food Rev Int. 2006;22(2):203–24.CrossRefGoogle Scholar
  12. 12.
    Duke JA. The green pharmacy: new discoveries in herbal remedies for common diseases and conditions from the world’s foremost authority on healing herbs. USA: Rodale; 1997.Google Scholar
  13. 13.
    Sreeja S, Anju V, Sreeja S. In vitro estrogenic activities of fenugreek Trigonella foenum graecum seeds. Indian J Med Res. 2010;131(6):814.Google Scholar
  14. 14.
    Zuppa AA, Sindico P, Orchi C, Carducci C, Cardiello V, Catenazzi P, et al. Safety and efficacy of galactogogues: substances that induce, maintain and increase breast milk production. Int J Pharm Pharm Sci. 2010;13(2):162–74.CrossRefGoogle Scholar
  15. 15.
    Al-Habori M, Al-Aghbari A, Al-Mamary M. Effects of fenugreek seeds and its extracts on plasma lipid profile: a study on rabbits. Phytother Res. 1998;12(8):572–5.CrossRefGoogle Scholar
  16. 16.
    Petit P, Sauvaire Y, Ponsin G, Manteghetti M, Fave A, Ribes G. Effects of a fenugreek seed extract on feeding behaviour in the rat: metabolic-endocrine correlates. Pharmacol Biochem Behav. 1993;45(2):369–74.CrossRefGoogle Scholar
  17. 17.
    Stark A, Madar Z. The effect of an ethanol extract derived from fenugreek (Trigonella foenum-graecum) on bile acid absorption and cholesterol levels in rats. Br J Nutr. 1993;69(01):277–87.CrossRefGoogle Scholar
  18. 18.
    Petit PR, Sauvaire YD, Hillaire-Buys DM, Leconte OM, Baissac YG, Ponsin GR, et al. Steroid saponins from fenugreek seeds: extraction, purification, and pharmacological investigation on feeding behavior and plasma cholesterol. Steroids. 1995;60(10):674–80.CrossRefGoogle Scholar
  19. 19.
    Eidi A, Eidi M, Sokhteh M. Effect of fenugreek (Trigonella foenum-graecum L) seeds on serum parameters in normal and streptozotocin-induced diabetic rats. Nutr Res. 2007;27(11):728–33.CrossRefGoogle Scholar
  20. 20.
    Kassaian N, Azadbakht L, Forghani B, Amini M. Effect of fenugreek seeds on blood glucose and lipid profiles in type 2 diabetic patients. Int J Vitam Nutr Res. 2009;79(1):34–9.CrossRefGoogle Scholar
  21. 21.
    Khosla P, Gupta D, Nagpal R. Effect of Trigonella foenum graecum (fenugreek) on blood glucose in normal and diabetic rats. Indian J Physiol Pharmacol. 1995;39:173.Google Scholar
  22. 22.
    Sharma R. Effect of fenugreek seeds and leaves on blood glucose and serum insulin responses in human subjects. Nutr Res. 1986;6(12):1353–64.CrossRefGoogle Scholar
  23. 23.
    Sharma R, Raghuram T. Hypoglycaemic effect of fenugreek seeds in non-insulin dependent diabetic subjects. Nutr Res. 1990;10(7):731–9.CrossRefGoogle Scholar
  24. 24.
    Hannan J, Rokeya B, Faruque O, Nahar N, Mosihuzzaman M, Khan AA, et al. Effect of soluble dietary fibre fraction of Trigonella foenum graecum on glycemic, insulinemic, lipidemic and platelet aggregation status of type 2 diabetic model rats. J Ethnopharmacol. 2003;88(1):73–7.CrossRefGoogle Scholar
  25. 25.
    Gad MZ, El-Sawalhi MM, Ismail MF, El-Tanbouly ND. Biochemical study of the anti-diabetic action of the Egyptian plants fenugreek and balanites. Mol Cell Biochem. 2006;281(1–2):173–83.CrossRefGoogle Scholar
  26. 26.
    Raghuram T, Sharma R, Sivakumar B, Sahay B. Effect of fenugreek seeds on intravenous glucose disposition in non-insulin dependent diabetic patients. Phytother Res. 1994;8(2):83–6.CrossRefGoogle Scholar
  27. 27.
    Subramanian SP, Prasath GS. Antidiabetic and antidyslipidemic nature of trigonelline, a major alkaloid of fenugreek seeds studied in high-fat-fed and low-dose streptozotocin-induced experimental diabetic rats. Biomed Prevent Nut. 2014;4(4):475–80.CrossRefGoogle Scholar
  28. 28.
    Farag MA, Porzel A, Wessjohann LA. Unraveling the active hypoglycemic agent trigonelline in Balanites aegyptiaca date fruit using metabolite fingerprinting by NMR. J Pharm Biomed Anal. 2015;115:383–7.CrossRefGoogle Scholar
  29. 29.
    Benayad Z, Gómez-Cordovés C, Es-Safi NE. Characterization of flavonoid glycosides from fenugreek (Trigonella foenum-graecum) crude seeds by HPLC–DAD–ESI/MS analysis. Int J Mol Sci. 2014;15(11):20668–85.CrossRefGoogle Scholar
  30. 30.
    Kaviarasan S, Naik G, Gangabhagirathi R, Anuradha C, Priyadarsini K. In vitro studies on antiradical and antioxidant activities of fenugreek (Trigonella foenum graecum) seeds. Food Chem. 2007;103(1):31–7.CrossRefGoogle Scholar
  31. 31.
    Kawashty SA, Abdalla MF, Gamal El Din EM, Saleh NAM. The chemosystematics of Egyptian Trigonella species. Biochem Syst Ecol. 1998;26(8):851–6. doi: 10.1016/S0305-1978(96)00101-9.CrossRefGoogle Scholar
  32. 32.
    Mandegary A, Pournamdari M, Sharififar F, Pournourmohammadi S, Fardiar R, Shooli S. Alkaloid and flavonoid rich fractions of fenugreek seeds (Trigonella foenum-graecum L.) with antinociceptive and anti-inflammatory effects. Food Chem Toxicol. 2012;50(7):2503–7.CrossRefGoogle Scholar
  33. 33.
    Sur P, Das M, Gomes A, Vedasiromoni J, Sahu NP, Banerjee S, et al. Trigonella foenum graecum (fenugreek) seed extract as an antineoplastic agent. Phytother Res. 2001;15(3):257–9.CrossRefGoogle Scholar
  34. 34.
    Rathore S, Saxena S, Singh B. Potential health benefits of major seed spices. Int J Seed Spices. 2013;3(2):1–12.Google Scholar
  35. 35.
    Reid JG, Bewley JD. A dual role for the endosperm and its galactomannan reserves in the germinative physiology of fenugreek (Trigonella foenum-graecum L.), an endospermic leguminous seed. Planta. 1979;147(2):145–50.CrossRefGoogle Scholar
  36. 36.
    X-m XU, WANG J, YANG H, YUAN CJ, HUANG W-P. Studies on saponins from seeds of Trigonella foenum-graecum III. Isolation and structural elucidation for a new saponin D [J]. Chinese Traditional and Herbal Drugs. 2005;6:001.Google Scholar
  37. 37.
    Farag MA, Porzel A, Wessjohann LA. Comparative metabolite profiling and fingerprinting of medicinal licorice roots using a multiplex approach of GC–MS, LC–MS and 1D NMR techniques. Phytochemistry. 2012;76:60–72.CrossRefGoogle Scholar
  38. 38.
    Farag MA, Weigend M, Luebert F, Brokamp G, Wessjohann LA. Phytochemical, phylogenetic, and anti-inflammatory evaluation of 43 Urtica accessions (stinging nettle) based on UPLC–Q-TOF-MS metabolomic profiles. Phytochemistry. 2013;96:170–83.CrossRefGoogle Scholar
  39. 39.
    Hall RD. Plant metabolomics: from holistic hope, to hype, to hot topic. New Phytol. 2006;169(3):453–68.CrossRefGoogle Scholar
  40. 40.
    Kim W, Peever TL, Park J-J, Park C-M, Gang DR, Xian M et al. Use of metabolomics for the chemotaxonomy of legume-associated Ascochyta and allied genera. Scientific Reports. 2016;6Google Scholar
  41. 41.
    Farag MA, Porzel A, Al-Hammady MA, Hegazy ME, Meyer A, Mohamed TA, et al. Soft corals biodiversity in the Egyptian Red Sea: a comparative MS and NMR metabolomics approach of wild and aquarium grown species. J Proteome Res. 2016;15(4):1274–87. doi: 10.1021/acs.jproteome.6b00002.CrossRefGoogle Scholar
  42. 42.
    Avula B, Wang Y-H, Rumalla CS, Smillie TJ, Khan IA. Simultaneous determination of alkaloids and flavonoids from aerial parts of Passiflora species and dietary supplements using UPLC-UV-MS and HPTLC. Nat Prod Commun. 2012;7(9):1177–80.Google Scholar
  43. 43.
    Simirgiotis M, Cuevas H, Tapia W, Bórquez J. Edible Passiflora (banana passion) fruits: a source of bioactive C-glycoside flavonoids obtained by HSCCC and HPLC-DAD-ESI/MS/MS. Planta Med. 2012;78(11):I442.CrossRefGoogle Scholar
  44. 44.
    Davis BD, Brodbelt JS. Determination of the glycosylation site of flavonoid monoglucosides by metal complexation and tandem mass spectrometry. J Am Soc Mass Spectrom. 2004;15(9):1287–99.CrossRefGoogle Scholar
  45. 45.
    Figueirinha A, Paranhos A, Pérez-Alonso JJ, Santos-Buelga C, Batista MT. Cymbopogon citratus leaves: characterization of flavonoids by HPLC–PDA–ESI/MS/MS and an approach to their potential as a source of bioactive polyphenols. Food Chem. 2008;110(3):718–28.CrossRefGoogle Scholar
  46. 46.
    Ferreres F, Gil-Izquierdo A, Andrade PB, Valentão P, Tomás-Barberán F. Characterization of C-glycosyl flavones O-glycosylated by liquid chromatography–tandem mass spectrometry. J Chromatogr A. 2007;1161(1):214–23.CrossRefGoogle Scholar
  47. 47.
    Benayad Z, Gómez-Cordovés C, Es-Safi NE. Identification and quantification of flavonoid glycosides from fenugreek (Trigonella foenum-graecum) germinated seeds by LC–DAD–ESI/MS analysis. J Food Compos Anal. 2014;35(1):21–9. doi: 10.1016/j.jfca.2014.04.002.CrossRefGoogle Scholar
  48. 48.
    Geiger H, Markham KR. The C-glycosylflavone pattern of Passiflora incamata L. Zeitschrift für Naturforschung C. 1986;41(9–10):949–50.Google Scholar
  49. 49.
    Abad‐García B, Garmón‐Lobato S, Berrueta LA, Gallo B, Vicente F. New features on the fragmentation and differentiation of C-glycosidic flavone isomers by positive electrospray ionization and triple quadrupole mass spectrometry. Rapid Commun Mass Spectrom. 2008;22(12):1834–42.CrossRefGoogle Scholar
  50. 50.
    Rayyan S, Fossen T, Andersen ØM. Flavone C-glycosides from seeds of fenugreek, Trigonella foenum-graecum L. J Agric Food Chem. 2010;58(12):7211–7.CrossRefGoogle Scholar
  51. 51.
    Han Y, Nishibe S, Noguchi Y, Jin Z. Flavonol glycosides from the stems of Trigonella foenum-graecum. Phytochemistry. 2001;58(4):577–80.CrossRefGoogle Scholar
  52. 52.
    Mabry TJ, Markham K, Thomas M. The ultraviolet spectra of flavones and flavonols. The systematic identification of flavonoids. Springer; 1970. p. 41–164.Google Scholar
  53. 53.
    Li S, Jiang Z, Thamm L, Zhou G. 10-Hydroxy-2-decenoic acid as an antimicrobial agent in draft keg-conditioned wheat beer. J Am Soc Brew Chem. 2010;68(2):114–8.Google Scholar
  54. 54.
    Lichtman AH, Hawkins EG, Griffin G, Cravatt BF. Pharmacological activity of fatty acid amides is regulated, but not mediated, by fatty acid amide hydrolase in vivo. J Pharmacol Exp Ther. 2002;302(1):73–9.CrossRefGoogle Scholar
  55. 55.
    Mustafa J, Khan SI, Ma G, Walker LA, Khan IA. Synthesis and anticancer activities of fatty acid analogs of podophyllotoxin. Lipids. 2004;39(2):167–72.Google Scholar
  56. 56.
    Shah S, Bodhankar S, Badole S, Kamble H, Mohan V. Effect of trigonelline: an active compound from Trigonella foenum graecum Linn. in alloxan induced diabetes in mice. J Cell Tiss Res. 2006;6(1):585.Google Scholar
  57. 57.
    Gad HA, El‐Ahmady SH, Abou‐Shoer MI, Al‐Azizi MM. Application of chemometrics in authentication of herbal medicines: a review. Phytochem Anal. 2013;24(1):1–24.CrossRefGoogle Scholar
  58. 58.
    Farag MA, Gad HA, Heiss AG, Wessjohann LA. Metabolomics driven analysis of six Nigella species seeds via UPLC-qTOF-MS and GC–MS coupled to chemometrics. Food Chem. 2014;151:333–42.CrossRefGoogle Scholar
  59. 59.
    Farag MA, Mohsen M, Heinke R, Wessjohann LA. Metabolomic fingerprints of 21 date palm fruit varieties from Egypt using UPLC/PDA/ESI–qTOF-MS and GC–MS analyzed by chemometrics. Food Res Int. 2014;64:218–26.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Mohamed A. Farag
    • 1
    Email author
  • Dalia M. Rasheed
    • 2
  • Matthias Kropf
    • 3
  • Andreas G. Heiss
    • 4
    • 5
  1. 1.Pharmacognosy Department, College of PharmacyCairo UniversityCairoEgypt
  2. 2.Pharmacognosy Department, Faculty of PharmacyOctober 6 UniversitySixth of October CityEgypt
  3. 3.Institute of Integrative Nature Conservation Research (INF)University of Natural Resources and Life Sciences (BOKU)ViennaAustria
  4. 4.Institute of BotanyUniversity for Natural Resources and Life Sciences (BOKU)ViennaAustria
  5. 5.Vienna Institute for Archaeological Science (VIAS)University of ViennaViennaAustria

Personalised recommendations