Advertisement

Analytical and Bioanalytical Chemistry

, Volume 408, Issue 25, pp 6913–6927 | Cite as

Recent advances and progress in the detection of bisphenol A

  • Fengxia Sun
  • Lichao Kang
  • Xiaoli Xiang
  • Hongmin Li
  • Xiaoling Luo
  • Ruifeng Luo
  • Chunxia Lu
  • Xiayu PengEmail author
Review

Abstract

Bisphenol A (BPA) is an important industrial chemical used as a plasticizer in polycarbonate and epoxy resins in the plastic and paper industries. Because of its estrogenic properties, BPA has attracted increasing attention from many researchers. This review focuses primarily on analytical methods for BPA detection that have emerged in recent years. We present and discuss the advantages and disadvantages of sample preparation techniques (e.g., solvent extraction, solid-phase extraction, molecularly imprinted polymer solid-phase extraction, and micro-extraction techniques) and analytical methods (e.g., liquid chromatography, liquid chromatography−mass spectrometry, gas chromatography−mass spectrometry, capillary electrophoresis, immunoassay, and several novel sensors). We also discuss expected future developments for the detection of BPA.

Graphical Abstract

This review focuses primarily on the recent development in the detection of bisphenol A including sample pre-treatment and analytical methods

Keywords

Bisphenol A Sample pretreatment Mass spectrometry Immunoassay Sensors Molecularly imprinted polymers 

Notes

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (no. 21567027), the Scientific and Technological Project of the XPCC (no. 2015AB009), and the Science & Technology to guide project of Xinjiang Academy of Agriculture and Reclamation Science (no. 76YYD201501).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Vandenberg LN, Maffini MV, Sonnenschein C, Rubin BS, Soto AM. Endocr Rev. 2009;30:75–95.CrossRefGoogle Scholar
  2. 2.
    Geens T, Aerts D, Berthot C, Bourguignon JP, Goeyens L, Lecomte P, et al. Food Chem Toxicol. 2012;50:3725–40.CrossRefGoogle Scholar
  3. 3.
    Geens T, Goeyens L, Covaci A. Int J Hyg Environ Health. 2011;214:339–47.CrossRefGoogle Scholar
  4. 4.
    Vom-Saal FS, Hughes C. Environ Health Perspect. 2005;113:926–33.CrossRefGoogle Scholar
  5. 5.
    Rubin BS. J Steroid Biochem Mol Biol. 2011;127:27–34.CrossRefGoogle Scholar
  6. 6.
    Cabaton NJ, Wadia PR, Rubin BS, Zalko D, Schaeberle CM, Askenase MH, et al. Environ Health Perspect. 2011;119:547–52.CrossRefGoogle Scholar
  7. 7.
    Michałowicz J. Environ Toxicol Pharmacol. 2014;37:738–58.CrossRefGoogle Scholar
  8. 8.
    Rochester JR. Reprod Toxicol. 2013;42:132–55.CrossRefGoogle Scholar
  9. 9.
    Ballesteros-Gómez A, Rubio S, Pérez-Bendito AD. J Chromatogr A. 2009;1216:449–69.CrossRefGoogle Scholar
  10. 10.
    Ragavan KV, Rastogi NK, Thakur MS. Trends Anal Chem. 2013;52:248–60.CrossRefGoogle Scholar
  11. 11.
    Sun FX, Wei M, Xu LG, Zhu YY, Liu LQ, Peng CF, et al. Trends Anal Chem. 2010;29:1239–49.CrossRefGoogle Scholar
  12. 12.
    Zhong SX, Tan SN, Ge LY, Wang WP, Chen JR. Talanta. 2011;85:488–92.CrossRefGoogle Scholar
  13. 13.
    Wu HL, Li GL, Liu SC, Hu N, Geng DD, Chen G, et al. Food Chem. 2016;192:98–106.CrossRefGoogle Scholar
  14. 14.
    Liu SH, Xie QL, Chen J, Sun JZ, He H, Zhang XK. J Chromatogr A. 2013;1295:16–23.CrossRefGoogle Scholar
  15. 15.
    Pedersen SN, Lindholst C. J Chromatogr A. 1999;864:17–24.CrossRefGoogle Scholar
  16. 16.
    Liu R, Zhou JL, Wilding A. J Chromatogr A. 2004;1038:19–26.CrossRefGoogle Scholar
  17. 17.
    Dorival-García N, Zafra-Gómez A, Navalón A, Vílchez JL. J Chromatogr A. 2012;1253:1–10.CrossRefGoogle Scholar
  18. 18.
    Kang HY, Wang XL, Zhang Y, Wu JF, Wang HQ. RSC Adv. 2015;5:14631–6.CrossRefGoogle Scholar
  19. 19.
    Liao CY, Liu F, Moon HB, Yamashita N, Yun SH, Kannan K. Environ Sci Technol. 2012;46:11558–65.CrossRefGoogle Scholar
  20. 20.
    Vega-Morales T, Sosa-Ferrera Z, Santana-Rodríguez JJ. Talanta. 2011;85:1825–34.CrossRefGoogle Scholar
  21. 21.
    Jiao Z, Guo ZN, Zhang SL, Chen HW, Xie HQ, Zeng SH. Anal Lett. 2015;48:1355–66.CrossRefGoogle Scholar
  22. 22.
    Xiao J, Shao B, Wu XY, Sun XJ, Wu YN. Biomed Environ Sci. 2011;24:40–6.Google Scholar
  23. 23.
    Zimmers SM, Browne EP, O’Keefe PW, Anderton DL, Kramer L, Reckhow DA, et al. Chemosphere. 2014;104:237–43.CrossRefGoogle Scholar
  24. 24.
    Asimakopoulos AG, Thomaidis NS. J Chromatogr, B. 2015;986–987:85–93.CrossRefGoogle Scholar
  25. 25.
    Mousa A, Basheer C, Al-Arfaj AR. Talanta. 2013;115:308–13.CrossRefGoogle Scholar
  26. 26.
    Kubo T, Kuroda K, Tominaga Y, Naito T, Sueyoshi K, Hosoya K, et al. J Pharm Biomed Anal. 2014;89:111–7.CrossRefGoogle Scholar
  27. 27.
    Kubo T, Arimura S, Tominaga Y, Naito T, Hosoya K, Otsuka K. Macromolecules. 2015;48:4081–7.CrossRefGoogle Scholar
  28. 28.
    Tominaga Y, Kubo T, Yasuda K, Kato K, Hosoya K. Microporous Mesoporous Mater. 2012;156:161–5.CrossRefGoogle Scholar
  29. 29.
    Wu YT, Liu YJ, Gao X, Gao KC, Xia H, Luo MF, et al. Chemosphere. 2015;119:515–23.CrossRefGoogle Scholar
  30. 30.
    Wu YT, Zhang YH, Zhang M, Liu F, Wan YC, Huang Z, et al. Food Chem. 2014;164:527–35.CrossRefGoogle Scholar
  31. 31.
    Wang YX, Ding Y, Rong F, Fu DG. Polym Bull. 2012;68:1255–70.CrossRefGoogle Scholar
  32. 32.
    Yang JJ, Li Y, Wang JC, Sun XL, Cao R, Sun H, et al. Anal Chim Acta. 2015;872:35–45.CrossRefGoogle Scholar
  33. 33.
    Yang JJ, Li Y, Wang JC, Sun XL, Shah SM, Cao R, et al. Anal Chim Acta. 2015;853:311–9.CrossRefGoogle Scholar
  34. 34.
    Li J, Zhang XB, Liu YX, Tong HY, Xu YP, Liu SM. Talanta. 2013;117:281–7.CrossRefGoogle Scholar
  35. 35.
    Yu D, Hu XL, Wei ST, Wang Q, He CY, Liu SR. J Chromatogr A. 2015;1396:17–24.CrossRefGoogle Scholar
  36. 36.
    Sun XL, Wang JC, Li Y, Jin J, Zhang BQ, Shah SM, et al. J Chromatogr A. 2014;1343:33–41.CrossRefGoogle Scholar
  37. 37.
    Sun XL, Wang JC, Li Y, Jin J, Yang JJ, Li F, et al. J Chromatogr A. 2014;1360:9–16.CrossRefGoogle Scholar
  38. 38.
    Zhang ZH, Chen X, Rao W, Chen HJ, Cai R. J Chromatogr, B. 2014;965:190–6.CrossRefGoogle Scholar
  39. 39.
    Liu JZ, Wang WZ, Xie YF, Huang YY, Liu YL, Liu XJ, et al. J Mater Chem. 2011;21:9232–8.CrossRefGoogle Scholar
  40. 40.
    Zhu R, Zhao WH, Zhai MJ, Wei FD, Cai Z, Sheng N, et al. Anal Chim Acta. 2010;658:209–16.CrossRefGoogle Scholar
  41. 41.
    Canale F, Cordero C, Baggiani C, Baravalle P, Giovannoli C, Bicchi C. J Sep Sci. 2010;33:1644–51.CrossRefGoogle Scholar
  42. 42.
    Sheng N, Wei FD, Zhan W, Cai Z, Du SH, Zhou XM, et al. J Sep Sci. 2012;35:707–12.CrossRefGoogle Scholar
  43. 43.
    Sanbe H, Hosoya K, Haginaka J. Anal Sci. 2003;19:715–9.CrossRefGoogle Scholar
  44. 44.
    Watabe Y, Hosoya K, Tanaka N, Kondo T, Morita M, Kubo T. Anal Bioanal Chem. 2005;381:1193–8.CrossRefGoogle Scholar
  45. 45.
    Inoue N, Ooya T, Toshifumi T. Microchim Acta. 2013;180:1387–92.CrossRefGoogle Scholar
  46. 46.
    Gałuszka A, Migaszewiski Z, Namieśnik J. Trends Anal Chem. 2013;50:78–84.CrossRefGoogle Scholar
  47. 47.
    Armenta S, Garrigues S, Guardia MDL. Trends Anal Chem. 2015;71:2–8.CrossRefGoogle Scholar
  48. 48.
    Zhuang YF, Zhou M, Gu J, Li XM. Spectrochim Acta A Mol Biomol Spectrosc. 2014;122:153–7.CrossRefGoogle Scholar
  49. 49.
    Zhou QX, Gao YY, Xie GH. Talanta. 2011;85:1598–602.CrossRefGoogle Scholar
  50. 50.
    Tzatzarakis MN, Vakonaki E, Kavvalakis MP, Barmpas M, Kokkinakis EN, Xenos K, et al. Chemosphere. 2015;118:336–41.CrossRefGoogle Scholar
  51. 51.
    Vitku J, Chlupacova T, Sosvorova L, Hampl R, Hill M, Heracek J, et al. Talanta. 2015;140:62–7.CrossRefGoogle Scholar
  52. 52.
    Venisse N, Grignon C, Brunet B, Thévenot S, Bacle A, Migeot V, et al. Talanta. 2014;125:284–92.CrossRefGoogle Scholar
  53. 53.
    Halle AT, Claparols C, Garrigues JC, Franceschi-Messant S, Perez E. J Chromatogr A. 2015;1414:1–9.CrossRefGoogle Scholar
  54. 54.
    Yazdinezhad SR, Ballesteros-Gómez A, Lunar L, Rubio S. Anal Chim Acta. 2013;778:31–7.CrossRefGoogle Scholar
  55. 55.
    Esteve C, Herrero L, Gómara B, Quintanilla-López JE. Talanta. 2016;146:326–34.CrossRefGoogle Scholar
  56. 56.
    Provencher G, Bérubé R, Dumas P, Bienvenu J-F, Gaudreau E, Bélanger P, et al. J Chromatogr A. 2014;1348:97–104.CrossRefGoogle Scholar
  57. 57.
    Zhou XL, Kramer JP, Calafat AM, Ye XY. J Chromatogr, B. 2014;944:152–6.CrossRefGoogle Scholar
  58. 58.
    Ros O, Vallejo A, Blanco-Zubiaguirre L, Olivares M, Delgado A, Etxebarria N, et al. Talanta. 2015;134:247–55.CrossRefGoogle Scholar
  59. 59.
    Zuo YG, Zhu Z. Chemosphere. 2014;107:447–53.CrossRefGoogle Scholar
  60. 60.
    Deceuninck Y, Bichon E, Durand S, Bemrah N, Zendong Z, Morvan ML, et al. J Chromatogr A. 2014;1362:241–9.CrossRefGoogle Scholar
  61. 61.
    Selvaraj KK, Shanmugam G, Sampath S, Larsson DGJ, Ramaswamy BR. Ecotoxicol Environ Safety. 2014;99:13–20.CrossRefGoogle Scholar
  62. 62.
    Cunh SC, Cunha C, Ferreira AR, Fernandes JO. Anal Bioanal Chem. 2012;404:2453–63.CrossRefGoogle Scholar
  63. 63.
    Lu J, Wu J, Stoffella PJ, Wilson PC. J Chromatogr A. 2012;1258:128–35.CrossRefGoogle Scholar
  64. 64.
    Mei SR, Wu D, Jiang M, Lu B, Lim JM, Zhou YK, et al. Microchem J. 2011;98:150–5.CrossRefGoogle Scholar
  65. 65.
    Zhang XF, Zhu D, Huang CP, Sun YH, Lee YI. Microchem J. 2015;121:1–5.CrossRefGoogle Scholar
  66. 66.
    Zeng J, Kuang H, Hu CX, Shi XZ, Yan M, Xu LG, et al. Environ Sci Technol. 2013;47:7457–65.Google Scholar
  67. 67.
    Konieczka P. Crit Rev Anal Chem. 2007;37:173–90.CrossRefGoogle Scholar
  68. 68.
    Lu Y, Peterson JR, Gooding JJ, Lee NA. Anal Bioanal Chem. 2012;403:1607–18.CrossRefGoogle Scholar
  69. 69.
    Lei YJ, Fang LZ, Akash MSH, Liu ZM, Shi WX, Chen SQ. Anal Methods. 2013;5:6106–13.CrossRefGoogle Scholar
  70. 70.
    Maiolini E, Ferri E, Pitasi AL, Montoy A, Giovanni MD, Errani E, et al. Analyst (Cambridge, U K). 2014;139:318–24.CrossRefGoogle Scholar
  71. 71.
    Mei ZL, Deng Y, Chu HQ, Xue F, Zhong YH, Wu JJ, et al. Microchim Acta. 2013;180:279–85.CrossRefGoogle Scholar
  72. 72.
    Mei ZL, Qu W, Deng Y, Chu HQ, Cao JX, Xue F, et al. Biosens Bioelectron. 2013;49:457–61.CrossRefGoogle Scholar
  73. 73.
    Xiong Y, Ye ZB, Xu J, Liu YC, Zhang HY. Anal Bioanal Chem. 2014;406:2411–20.CrossRefGoogle Scholar
  74. 74.
    Zhu LL, Cao YH, Cao GQ. Biosens Bioelectron. 2014;54:258–61.CrossRefGoogle Scholar
  75. 75.
    Wu XQ, Zhang Z, Li JH, You HY, Li YB, Chen LX. Sens Actuators, B. 2015;211:507–14.CrossRefGoogle Scholar
  76. 76.
    Lee JS, Kim SG, Jun J, Shin DH, Jang J. Adv Funct Mater. 2014;24:6145–53.CrossRefGoogle Scholar
  77. 77.
    Kuang H, Yin HH, Liu LQ, Xu LG, Ma W, Xu CL. ACS Appl Mater Interfaces. 2014;6:364–9.CrossRefGoogle Scholar
  78. 78.
    Chung E, Jeon J, Yu JM, Lee C, Choo J. Biosens Bioelectron. 2015;64:560–5.CrossRefGoogle Scholar
  79. 79.
    Zhu YY, Cai YL, Xu LG, Zheng LX, Wang LM, Qi B, et al. ACS Appl Mater Interfaces. 2015;7:7492–6.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Fengxia Sun
    • 1
    • 2
  • Lichao Kang
    • 1
  • Xiaoli Xiang
    • 1
  • Hongmin Li
    • 1
  • Xiaoling Luo
    • 1
    • 2
  • Ruifeng Luo
    • 1
  • Chunxia Lu
    • 1
  • Xiayu Peng
    • 2
    Email author
  1. 1.Analysis and Testing CenterXinjiang Academy of Agriculture and Reclamation ScienceShiheziChina
  2. 2.State Key Laboratory of Sheep Genetic Improvement & Healthy BreedingXinjiang Academy of Agriculture and Reclamation ScienceShiheziChina

Personalised recommendations