Skip to main content
Log in

Improved quantification of important beer quality parameters based on nonlinear calibration methods applied to FT-MIR spectra

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

During the production process of beer, it is of utmost importance to guarantee a high consistency of the beer quality. For instance, the bitterness is an essential quality parameter which has to be controlled within the specifications at the beginning of the production process in the unfermented beer (wort) as well as in final products such as beer and beer mix beverages. Nowadays, analytical techniques for quality control in beer production are mainly based on manual supervision, i.e., samples are taken from the process and analyzed in the laboratory. This typically requires significant lab technicians efforts for only a small fraction of samples to be analyzed, which leads to significant costs for beer breweries and companies. Fourier transform mid-infrared (FT-MIR) spectroscopy was used in combination with nonlinear multivariate calibration techniques to overcome (i) the time consuming off-line analyses in beer production and (ii) already known limitations of standard linear chemometric methods, like partial least squares (PLS), for important quality parameters Speers et al. (J I Brewing. 2003;109(3):229–235), Zhang et al. (J I Brewing. 2012;118(4):361–367) such as bitterness, citric acid, total acids, free amino nitrogen, final attenuation, or foam stability. The calibration models are established with enhanced nonlinear techniques based (i) on a new piece-wise linear version of PLS by employing fuzzy rules for local partitioning the latent variable space and (ii) on extensions of support vector regression variants (𝜖-PLSSVR and ν-PLSSVR), for overcoming high computation times in high-dimensional problems and time-intensive and inappropriate settings of the kernel parameters. Furthermore, we introduce a new model selection scheme based on bagged ensembles in order to improve robustness and thus predictive quality of the final models. The approaches are tested on real-world calibration data sets for wort and beer mix beverages, and successfully compared to linear methods, showing a clear out-performance in most cases and being able to meet the model quality requirements defined by the experts at the beer company.

Workflow for calibration of non-Linear model ensembles from FT-MIR spectra in beer production 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. http://www.eigenvector.com/software/pls_toolbox.htm

References

  1. Speers RA, Rogers P, Smith B. Non-linear modelling of industrial brewing fermentations. J I Brewing 2003;109(3):229–235.

    Article  Google Scholar 

  2. Zhang Y, Jia S, Zhang W. Predicting acetic acid content in the final beer using neural networks and support vector machine. J I Brewing 2012;118(4):361–367.

    Article  CAS  Google Scholar 

  3. McMurrough M, Lynch V, Murray F, Kearney M. A comparison of alternative high-performance liquid chromatographic systems for measuring bitterness in beer. J Am Soc Brew Chem 1987;45:6–13.

    CAS  Google Scholar 

  4. de Keukeleire D. Fundamentals of beer and hop chemistry. Quim Nova 2000;23(1):108–112.

    Article  CAS  Google Scholar 

  5. Polshin E, Aernouts B, Saeys W, Delvaux F, Delvaux FR, Saison D, Hertog M, Nicolai BM, Lammertyn J. Beer quality screening by FT-IR spectrometry: impact of measurement strategies, data pre-processings and variable selection methods. J Food Eng 2011;106(3):188–198.

    Article  CAS  Google Scholar 

  6. Lachenmeier DW. Rapid quality control of spirit drinks and beer using multivariate data analysis of fourier transform infrared spectra. Food Chem 2007;101(2):825–832.

    Article  CAS  Google Scholar 

  7. Christensen J, Ladefoged AM, Nrgaard L. Rapid determination of bitterness in beer using fluorescence spectroscopy and chemometrics. J I Brewing 2012;111(1):3–10.

    Article  Google Scholar 

  8. Grassi S, Amigo JM, Lyndgaard CB, Foschino R, Casiraghi E. Beer fermentation: monitoring of process parameters by FT-NIR and multivariate data analysis. Food Chem 2014;155:279–286.

    Article  CAS  Google Scholar 

  9. Haenlein M, Kaplan AM. A beginner’s guide to partial least squares (PLS) analysis. Und Stat 2004;3(4): 283–297.

    Google Scholar 

  10. Brazdil P, Giraud-Carrier C, Soares C, Vilalta R. Metalearning. Berlin Heidelberg: Springer; 2009.

    Google Scholar 

  11. Bleier Z, Brouillette C, Carangelo R. A monolithic interferometer for FT-IR spectroscopy. Spectroscopy 1999;14(10):46–49.

    CAS  Google Scholar 

  12. Griffiths PR, De Haseth JA. Fourier Transform Infrared Spectrometry, 2nd edn. New Jersey: Wiley; 2007.

    Book  Google Scholar 

  13. Jolliffe IT. Principal Component Analysis. Berlin Heidelberg New York: Springer Verlag; 2002.

    Google Scholar 

  14. Brereton RG. Chemometrics: Data Analysis for the Laboratory and Chemical Plant. New Jersey: Wiley; 2003.

    Book  Google Scholar 

  15. Varmuza K, Filzmoser P. Introduction to Multivariate Statistical Analysis in Chemometrics. Boca Raton: CRC Press; 2009.

    Book  Google Scholar 

  16. Otto M. Chemometrics, 2nd edn. New Jersey: Wiley; 2007.

    Google Scholar 

  17. Mark H, Workman J. Chemometrics in Spectroscopy. The Netherlands: Academic Press; 2007.

    Google Scholar 

  18. Cernuda C, Lughofer E, Hintenaus P, Märzinger W. Enhanced waveband selection in NIR spectra using enhanced genetic operators. J Chemometr 2014;28(3):123–136.

    Article  CAS  Google Scholar 

  19. Rosipal R. Kernel partial least squares for nonlinear regression and discrimination. Neural Netw World 2003; 13(3):291–300.

    Google Scholar 

  20. Cernuda C, Lughofer E, Hintenaus P, Märzinger W, Reischer T, Pawlicek M, Kasberger J. Hybrid adaptive calibration methods and ensemble strategy for prediction of cloud point in melamine resin production. Chemometr Intell Lab 2013;126:60–75.

    Article  CAS  Google Scholar 

  21. Lughofer E. Evolving Fuzzy Systems, —Methodologies, Advanced Concepts and Applications. Berlin Heidelberg: Springer; 2011.

    Book  Google Scholar 

  22. Lughofer E, Cernuda C, Kindermann S, Pratama M. Generalized smart evolving fuzzy systems. Evol Sys 2015;6(4):269–292.

    Article  CAS  Google Scholar 

  23. Krishnamoorthy K, Mathew T. Statistical Tolerance Regions: Theory, Applications, and Computation. New Jersey: Wiley; 2009.

    Book  Google Scholar 

  24. Mahalanobis PC. On the generalised distance in statistics; 1936.

  25. Gray RM. Vector quantization. IEEE ASSP Mag 1984;1(2):4–29.

    Article  Google Scholar 

  26. Lughofer E, Sayed-Mouchaweh M. Autonomous data stream clustering implementing incremental split-and-merge techniques — towards a plug-and-play approach. Inform Scie 2015;204:54–79.

    Article  Google Scholar 

  27. Angelov PP, Filev D. An approach to online identification of Takagi-Sugeno fuzzy models. IEEE T Syst Man Cy B 2004;34(1):484–498.

    Article  Google Scholar 

  28. Lughofer E. FLEXFIS: A robust incremental learning approach for evolving TS fuzzy models. IEEE T Fuzzy Syst 2008;16(6):1393–1410.

    Article  Google Scholar 

  29. Vapnik V. Statistical Learning Theory. New York: Wiley; 1998.

    Google Scholar 

  30. Schölkopf B, Smola AJ. Learning with Kernels—Support Vector Machines, Regularization, Optimization and Beyond. London: MIT Press; 2002.

    Google Scholar 

  31. Hofmann T, Scholkopf B, Smola AJ. Kernel methods in machine learning. Ann Stat 2009;36(3):1171–1220.

    Article  Google Scholar 

  32. Smola AJ, Schölkopf B. A tutorial on support vector regression. Stat Comp 2004;14:199–222.

    Article  Google Scholar 

  33. Hsu C-W, Chang C-C, Lin C-J. 2010. A practical guide to support vector classification.

  34. Stone M. Cross-validatory choice and assessment of statistical predictions. J R Stat Soc 1974;36(1):111–147.

    Google Scholar 

  35. Breiman L. Bagging predictors. Mach Learn 1996;24(2):123–140.

    Google Scholar 

  36. Bras LP, Lopes M, Ferreira AP, Menezes JC. A bootstrap-based strategy for spectral interval selection in pls regression. J Chemometr 2008;22(11–12):695–700.

    Article  CAS  Google Scholar 

  37. Efron B, Tibshirani R. Improvements on cross-validation: the.632 + bootstrap method. J Am Stat Assoc 1997;92(438):548–560.

    Google Scholar 

  38. Breiman L. Random forests. Mach Learn 2001;45(1):5–32.

    Article  Google Scholar 

  39. Centner V, Massart D-L, de Noord OE, de Jong S, Vandeginste BM, Sterna S. Elimination of uninformative variables for multivariate calibration. Anal Chem 1996;68(21):3851–3858.

    Article  CAS  Google Scholar 

  40. Cai W, Li Y, Shao X. A variable selection method based on uninformative variable elimination for multivariate calibration of near-infrared spectra. Chemometr Intell Lab 2008;90:188–194.

    Article  CAS  Google Scholar 

  41. Andersen CR, Bro R. Variable selection in regression—a tutorial. J Chemometr 2010;24(11-12):728–737.

    Article  CAS  Google Scholar 

  42. Rinnan A, van den Berg F, Engelsen SB. Review of the most common pre-processing techniques for near-infrared spectra. Trend Anal Chem 2009;28(10):1201–1222.

    Article  CAS  Google Scholar 

  43. Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning: Data Mining, Inference and Prediction, 2nd ed. New York Berlin Heidelberg: Springer; 2009.

    Book  Google Scholar 

  44. Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc 1996;58:267–288.

    Google Scholar 

  45. Zou H, Hastie T. Regularization and variable selection via the elastic net. J R Stat Soc 2005;67(2):301–320.

    Article  Google Scholar 

  46. Hastie T, Tibshirani R, Friedman J. Regularized paths for generalized linear models via coordinate descent. J Stat Softw 2010;33(1).

  47. Hastie T, Tibshirani R, Friedman J. Pathwise coordinate optimization. Ann Appl Stat 2007;1(2):302–332.

    Article  Google Scholar 

  48. Cernuda C, Lughofer E, Maerzinger W, Kasberger J. NIR-based quantification of process parameters in polyetheracrylat (PEA) production using flexible non-linear fuzzy systems. Chemometr Intell Lab 2011;109(1):22–33.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support was provided by (i) the Austrian research funding association (FFG) under the scope of the COMET programme within the research project Industrial Methods for Process Analytical Chemistry - From Measurement Technologies to Information Systems (imPACts) (contract #843546), (ii) the Basque Government through the ELKARTEK and BERC 2014-2017 programs, and (iii) the Spanish Ministry of Economy and Competitiveness MINECO: BCAM Severo Ochoa accreditation SEV-2013-032. This publication reflects only the authors’ views.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin Lughofer.

Ethics declarations

This paper does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Process Analytics in Science and Industry with guest editor Rudolf W. Kessler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 3.26 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cernuda, C., Lughofer, E., Klein, H. et al. Improved quantification of important beer quality parameters based on nonlinear calibration methods applied to FT-MIR spectra. Anal Bioanal Chem 409, 841–857 (2017). https://doi.org/10.1007/s00216-016-9785-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9785-4

Keywords

Navigation