Analytical and Bioanalytical Chemistry

, Volume 408, Issue 24, pp 6649–6658 | Cite as

Identification of fungal metabolites from inside Gallus gallus domesticus eggshells by non-invasively detecting volatile organic compounds (VOCs)

  • Raquel Cumeras
  • Alexander A. Aksenov
  • Alberto Pasamontes
  • Alexander G. Fung
  • Amanda N. Cianchetta
  • Hung Doan
  • R. Michael Davis
  • Cristina E. Davis
Research Paper

Abstract

The natural porosity of eggshells allows hen eggs to become contaminated with microbes from the nesting material and environment. Those microorganisms can later proliferate due to the humid ambient conditions while stored in refrigerators, causing a potential health hazard to the consumer. The microbes’ volatile organic compounds (mVOCs) are released by both fungi and bacteria. We studied mVOCs produced by aging eggs likely contaminated by fungi and fresh eggs using the non-invasive detection method of gas-phase sampling of volatiles followed by gas chromatography/mass spectrometry (GC/MS) analysis. Two different fungal species (Cladosporium macrocarpum and Botrytis cinerea) and two different bacteria species (Stenotrophomas rhizophila and Pseudomonas argentinensis) were identified inside the studied eggs. Two compounds believed to originate from the fungi themselves were identified. One fungus-specific compound was found in both egg and the fungi: trichloromethane.

Graphical abstract

Trichloromethane is a potential biomarker of fungal contamination of eggs

Keywords

Volatile organic compounds (VOCs) Fungi Bacteria Hen egg Gas chromatography/mass spectrometry (GC/MS) Solid-phase microextraction (SPME) 

Notes

Acknowledgments

Partial support was provided by the National Institutes of Health (NIH) grant number #UL1 TR000002 [CED] and NSF award #1255915 [CED, AAA]. Opinions expressed in this publication are those of the authors and do not necessarily reflect the view of the funding agency.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

216_2016_9778_MOESM1_ESM.pdf (228 kb)
ESM 1 (PDF 228 kb)

References

  1. 1.
    McNamara DJ. Being positive about eggs. Raleigh: Proceedings of the National Egg Quality School. North Carolina State Univeristy; 2003. p. 230–45.Google Scholar
  2. 2.
    Stadelman WJ, Newkirk D, Newby L. Egg science and technology. CRC Press, editor. 1995.Google Scholar
  3. 3.
    Applegate E. Introduction: nutritional and functional roles of eggs in the diet. J Am Coll Nutr. 2000;19(sup5):495S–8.CrossRefGoogle Scholar
  4. 4.
    Romanoff AL, Romanoff AJ. The avian egg. New York: Wiley; 1949.Google Scholar
  5. 5.
    Mayes FJ, Takeballi MA. Microbial contamination of the hen’s egg: a review. J Food Prot. 1983;46(12):1092–8.Google Scholar
  6. 6.
    Board RG. The course of microbial infection of the hen’s egg. J Appl Bacteriol. 1966;29(2):319–41.CrossRefGoogle Scholar
  7. 7.
    Board RG, Fuller R. Microbiology of the avian egg. Chapman & Hall L, editor. 1994.Google Scholar
  8. 8.
    Bennett JW, Klich M. Mycotoxins. Clin Microbiol Rev. 2003;16(3):497–516.CrossRefGoogle Scholar
  9. 9.
    Lemfack M, Nickel J, Dunkel M, Preissner R, Piechulla B. mVOC: a database of microbial volatiles. Nucleic Acids Res. 2014;42(1):D744–8.CrossRefGoogle Scholar
  10. 10.
    Blackwell M. The fungi: 1, 2, 3 … 5.1 million species? Am J Bot. 2011;98(3):426–38.CrossRefGoogle Scholar
  11. 11.
    Curtis TP, Sloan WT, Scannell JW. Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci. 2002;99(16):10494–9.CrossRefGoogle Scholar
  12. 12.
    Saturn Varian Inc. Saturn Varian Chemstation, version 6.6; MS Data Review. Palo Alto, CA, USA. 2005.Google Scholar
  13. 13.
    White T, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand D, Shinsky J, White T, editors. PCR protocols: a guide to methods and applications: Academic Press; 1990. p. 315-22.Google Scholar
  14. 14.
    Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. 1991;173(2):697–703.Google Scholar
  15. 15.
    Polizzi V, Adams A, Malysheva SV, De Saeger S, Van Peteghem C, Moretti A, et al. Identification of volatile markers for indoor fungal growth and chemotaxonomic classification of Aspergillus species. Fungal Biol. 2012;116(9):941–53.CrossRefGoogle Scholar
  16. 16.
    Van Lancker F, Adams A, Delmulle B, De Saeger S, Moretti A, Van Peteghem C, et al. Use of headspace SPME-GC-MS for the analysis of the volatiles produced by indoor molds grown on different substrates. J Environ Monit. 2008;10(10):1127–33.CrossRefGoogle Scholar
  17. 17.
    Jewison T, Knox C, Neveu V, Djoumbou Y, Guo AC, Lee J, et al. YMDB: the yeast metabolome database. Nucleic Acids Res. 2012;40(D1):D815–20.CrossRefGoogle Scholar
  18. 18.
    Schäfer H, Myronova N, Boden R. Microbial degradation of dimethylsulphide and related C1-sulphur compounds: organisms and pathways controlling fluxes of sulphur in the biosphere. J Exp Bot. 2010;61(2):315–34.CrossRefGoogle Scholar
  19. 19.
    Brimblecombe P, Shooter D. Photo-oxidation of dimethylsulphide in aqueous solution. Mar Chem. 1986;19(4):343–53.CrossRefGoogle Scholar
  20. 20.
    Hanlon SP, Holt RA, Moore GR, McEwan AG. Isolation and characterization of a strain of Rhodobacter sulfidophilus: a bacterium which grows autotrophically with dimethylsulphide as electron donor. Microbiology. 1994;140(8):1953–8.CrossRefGoogle Scholar
  21. 21.
    Adkinson NFJ, Bochner BS, Burks AE, Busse WW, Holgate ST, Lemanske RFJ, et al. Middleton’s allergy: principles and practice 8th ed: Elsevier; 2015.Google Scholar
  22. 22.
    Achatz G, Oberkofler H, Lechenauer E, Simon B, Unger A, Kandler D, et al. Molecular cloning of major and minor allergens of Alternaria alternata and Cladosporium herbarum. Mol Immunol. 1995;32(3):213–27.CrossRefGoogle Scholar
  23. 23.
    Denning DW, O’Driscoll BR, Hogaboam CM, Bowyer P, Niven RM. The link between fungi and severe asthma: a summary of the evidence. Eur Respir J. 2006;27(3):615–26.CrossRefGoogle Scholar
  24. 24.
    Parr CS, Wilson N, Leary P, Schulz K, Lans K, Walley L, et al. The Encyclopedia of Life v2: providing global access to knowledge about life on earth. Biodivers Data J. 2014;2, e1079.CrossRefGoogle Scholar
  25. 25.
    Polizzi V, Delmulle B, Adams A, Moretti A, Susca A, Picco AM, et al. JEM Spotlight: fungi, mycotoxins and microbial volatile organic compounds in mouldy interiors from water-damaged buildings. J Environ Monit. 2009;11(10):1849–58.CrossRefGoogle Scholar
  26. 26.
    Williamson B, Tudzynski B, Tudzynski P, Van Kan JAL. Botrytis cinerea: the cause of grey mould disease. Mol Plant Pathol. 2007;8(5):561–80.CrossRefGoogle Scholar
  27. 27.
    Jarvis WR. The infection of strawberry and raspberry fruits by Botrytis cinerea Fr. Ann Appl Biol. 1962;50(3):569–75.CrossRefGoogle Scholar
  28. 28.
    Vandendriessche T, Keulemans J, Geeraerd A, Nicolai BM, Hertog MLATM. Evaluation of fast volatile analysis for detection of Botrytis cinerea infections in strawberry. Food Microbiol. 2012;32(2):406–14.CrossRefGoogle Scholar
  29. 29.
    Neri F, Cappellin L, Spadoni A, Cameldi I, Algarra Alarcon A, Aprea E, et al. Role of strawberry volatile organic compounds in the development of Botrytis cinerea infection. Plant Pathol. 2015;64(3):709–17.CrossRefGoogle Scholar
  30. 30.
    Soylu EM, Kurt Ş, Soylu S. In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea. Int J Food Microbiol. 2010;143(3):183–9.CrossRefGoogle Scholar
  31. 31.
    Hoekstra EJ, Verhagen FJM, Field JA, Leer EWBD, Brinkman UAT. Natural production of chloroform by fungi. Phytochemistry. 1998;49(1):91–7.CrossRefGoogle Scholar
  32. 32.
    Feng P, Shang YF, Cen K, Wang CS. Fungal biosynthesis of the bibenzoquinone oosporein to evade insect immunity. Proc Natl Acad Sci U S A. 2015;112(36):11365–70.CrossRefGoogle Scholar
  33. 33.
    Ryan RP, Monchy S, Cardinale M, Taghavi S, Crossman L, Avison MB, et al. The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat Rev Micro. 2009;7(7):514–25.CrossRefGoogle Scholar
  34. 34.
    Wolf A, Fritze A, Hagemann M, Berg G. Stenotrophomonas rhizophila sp. nov., a novel plant-associated bacterium with antifungal properties. Int J Syst Evol Microbiol. 2002;52(6):1937–44.Google Scholar
  35. 35.
    Schmidt C, Alavi M, Cardinale M, Müller H, Berg G. Stenotrophomonas rhizophila DSM14405T promotes plant growth probably by altering fungal communities in the rhizosphere. Biol Fertil Soils. 2012;48(8):947–60.CrossRefGoogle Scholar
  36. 36.
    Kai M, Effmert U, Berg G, Piechulla B. Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Arch Microbiol. 2007;187(5):351–60.CrossRefGoogle Scholar
  37. 37.
    Peix A, Berge O, Rivas R, Abril A, Velázquez E. Pseudomonas argentinensis sp. nov., a novel yellow pigment-producing bacterial species, isolated from rhizospheric soil in Córdoba, Argentina. Int J Syst Evol Microbiol. 2005;55(3):1107–12.CrossRefGoogle Scholar
  38. 38.
    Arfken AM, Song B, Sung JS. Comparison of airborne bacterial communities from hog farm and spray field. J Microbiol Biotechnol. 2014.Google Scholar
  39. 39.
    Hariharan H, Matthew V, Fountain J, Snell A, Doherty D, King B, et al. Aerobic bacteria from mucous membranes, ear canals, and skin wounds of feral cats in Grenada, and the antimicrobial drug susceptibility of major isolates. Comp Immunol Microbiol Infect Dis. 2011;34(2):129–34.CrossRefGoogle Scholar
  40. 40.
    Barghouthi SA, Younis K. First time isolation of Pseudomonas argentinensis from human skin infection. J Microbiol Infect Dis. 2014;4(2):78–83.CrossRefGoogle Scholar
  41. 41.
    Frey-Klett P, Burlinson P, Deveau A, Barret M, Tarkka M, Sarniguet A. Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol Mol Biol Rev: MMBR. 2011;75(4):583–609.CrossRefGoogle Scholar
  42. 42.
    H-j S, Jacquat-Bovet A-C, Mascher F, Métraux J-P. Oxalate-degrading bacteria can protect arabidopsis thaliana and crop plants against botrytis cinerea. Mol Plant-Microbe Interact. 2007;20(12):1535–44.CrossRefGoogle Scholar
  43. 43.
    Lanciotti R, Belletti N, Patrignani F, Gianotti A, Gardini F, Guerzoni ME. Application of hexanal, (E)-2-hexenal, and hexyl acetate to improve the safety of fresh-sliced apples. J Agric Food Chem. 2003;51(10):2958–63.CrossRefGoogle Scholar
  44. 44.
    Hibbing ME, Fuqua C, Parsek MR, Peterson SB. Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Micro. 2010;8(1):15–25.CrossRefGoogle Scholar
  45. 45.
    Paraskevopoulou A, Amvrosiadou S, Biliaderis CG, Kiosseoglou V. Mixed whey protein isolate-egg yolk or yolk plasma heat-set gels: rheological and volatile compounds characterisation. Food Res Int. 2014;62:492–9.CrossRefGoogle Scholar
  46. 46.
    Ghiaci P, Lameiras F, Norbeck J, Larsson C. Production of 2-butanol through meso-2,3-butanediol consumption in lactic acid bacteria. FEMS Microbiol Lett. 2014;360(1):70–5.CrossRefGoogle Scholar
  47. 47.
    de Lacy Costello BPJ, Evans P, Ewen RJ, Gunson HE, Ratcliffe NM, Spencer-Phillips PTN. Identification of volatiles generated by potato tubers (Solanum tuberosum CV: Maris Piper) infected by Erwinia carotovora, Bacillus polymyxa and Arthrobacter sp. Plant Pathol. 1999;48(3):345–51.CrossRefGoogle Scholar
  48. 48.
    Bromley-Challenor AKC, Caggiano N, Knapp SJ. Bacterial growth on N,N-dimethylformamide: implications for the biotreatment of industrial wastewater. J Ind Microbiol Biotechnol. 2000;25(1):8–16.CrossRefGoogle Scholar
  49. 49.
    Yannai S. Dictionary of food compounds with CD-ROM: additives, flavors, and ingredients. Boca Raton: Chapman & Hall/CRC; 2004.Google Scholar
  50. 50.
    Timmer R, Ter Heide R, De Valois PJ, Wobben HJ. Analysis of the lactone fraction of lavender oil (Lavandula vera D. C.). J Agric Food Chem. 1975;23(1):53–6.CrossRefGoogle Scholar
  51. 51.
    Burdock GA. Fenaroli’s handbook of flavor ingredients, fifth edition: CRC Press; 2004.Google Scholar
  52. 52.
    Gottlieb OR. Neolignans. In: Herz W, Grisebach H, Kirby GW, editors. Fortschritte der Chemie Organischer Naturstoffe / Progress in the chemistry of organic natural products. 35: Springer Vienna; 1978. p. 1-72.Google Scholar
  53. 53.
    Madyastha KM, Bhattacharyya PK, Vaidyanathan CS. Metabolism of a monoterpene alcohol, linalool, by a soil pseudomonad. Can J Microbiol. 1977;23(3):230–9.CrossRefGoogle Scholar
  54. 54.
    Rontani JF. Production of wax esters by bacteria. In: Timmis K, editor. Handbook of hydrocarbon and lipid microbiology: Springer Berlin Heidelberg; 2010. 459–70.Google Scholar
  55. 55.
    Arora DK. Handbook of fungal biotechnology. 2nd edition ed. Marcel Dekker I, editor. New York, USA. 2004. 592 pp.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Raquel Cumeras
    • 1
  • Alexander A. Aksenov
    • 1
  • Alberto Pasamontes
    • 1
  • Alexander G. Fung
    • 1
  • Amanda N. Cianchetta
    • 2
  • Hung Doan
    • 2
  • R. Michael Davis
    • 2
  • Cristina E. Davis
    • 1
    • 3
  1. 1.Department of Mechanical and Aerospace EngineeringUniversity of California, DavisDavisUSA
  2. 2.Department of Plant PathologyUniversity of California, DavisDavisUSA
  3. 3.Center for Nano and Micro Manufacturing (CNM2)University of California, DavisDavisUSA

Personalised recommendations