Analytical and Bioanalytical Chemistry

, Volume 408, Issue 22, pp 6213–6221 | Cite as

Impurity-induced peroxidase mimicry of nanoclay and its potential for the spectrophotometric determination of cholesterol

  • K. Aneesh
  • Chiranjeevi Srinivasa Rao Vusa
  • Sheela BerchmansEmail author
Research Paper


A green version of the “Fe” impurity-induced peroxidase mimicry exhibited by simple and cheap substrate “nanoclay (NC)” along with the highly sensitive amperometric and spectrophotometric determination of cholesterol is demonstrated. The “Fe” impurity can act as the catalyst center for hydrogen peroxide reduction similar to the horseradish peroxidase (HRP)-catalyzed reaction. The Michaelis–Menten constant for the NC-catalyzed reaction is found to be lower than that of the HRP-catalyzed reaction indicating high affinity for the substrate. The NC-modulated peroxidase-like catalytic activity originates from the electron transfer between the reducing substrate in the catalyst center and H2O2 with the intermediate generation of hydroxyl radicals. The peroxidase mimicry is successfully applied for the low-potential electrochemical detection of H2O2 (linear detection range 1.96–10.71 mM, R 2 = 0.97). The H2O2 sensing platform is further modified with cholesterol oxidase (CHOx) for the spectrophotometric (linear detection range 50–244 μM, R 2 = 0.99) and amperometric detection of cholesterol (linear detection range 0.099–1.73 mM, R 2 = 0.998).

Graphical abstract

Peroxidase mimicry of nanoclay for the determination of cholesterol


Micro/nano structures Nanoclay Peroxidase mimicry H2O2 detection Cholesterol detection 



We acknowledge the financial support from the project CSC0134 (M2D). Mr. K. Aneesh is thankful to CSIR, New Delhi, India, for the award of Senior Research Fellowship. The authors also acknowledge the help received from Mr. J. Kennedy, Central Instrumentation Facility, CECRI, for XPS analysis.

Compliance with ethical standards

The authors declare that they have no conflict of interest. All procedures performed in studies using human blood serum were in accordance with the ethical standards of the institution, and informed consent of all individual participants were taken for blood serum analysis.

Supplementary material

216_2016_9733_MOESM1_ESM.pdf (411 kb)
ESM 1 (PDF 410 kb)


  1. 1.
    Clark LC, Lyons C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann NY Acad Sci. 1962;102(1):29–45.CrossRefGoogle Scholar
  2. 2.
    Taubner K, Schubert G, Pulzer F, Pfaeffle R, Körner A, Dietz A, et al. Serum concentrations of anti-thyroid peroxidase and anti-thyroglobulin antibodies in children and adolescents without apparent thyroid disorders. Clin Biochem. 2014;47(1):3–7.CrossRefGoogle Scholar
  3. 3.
    Dunford HB, Stillman JS. On the function and mechanism of action of peroxidases. Coord Chem Rev. 1976;19(3):187–251. doi: 10.1016/S0010-8545(00)80316-1.CrossRefGoogle Scholar
  4. 4.
    Aneesh K, Vusa CSR, Berchmans S. Dual enzyme mimics exhibited by ITO nanocubes and its application in spectrophotometric and electrochemical sensing. Analyst. 2016;141(13):4024-8. doi: 10.1039/C6AN00811A.
  5. 5.
    Li Q, Tang G, Xiong X, Cao Y, Chen L, Xu F, et al. Carbon coated magnetite nanoparticles with improved water-dispersion and peroxidase-like activity for colorimetric sensing of glucose. Sensors Actuators B Chem. 2015;215:86–92.CrossRefGoogle Scholar
  6. 6.
    Wang N, Sun J, Chen L, Fan H, Ai S. A Cu2(OH) 3Cl-CeO2 nanocomposite with peroxidase-like activity, and its application to the determination of hydrogen peroxide, glucose and cholesterol. Microchim Acta. 2015;182(9–10):1733–8.CrossRefGoogle Scholar
  7. 7.
    Tian Z, Li J, Zhang Z, Gao W, Zhou X, Qu Y. Highly sensitive and robust peroxidase-like activity of porous nanorods of ceria and their application for breast cancer detection. Biomaterials. 2015;59:116–24.CrossRefGoogle Scholar
  8. 8.
    Xiang Z, Wang Y, Ju P, Zhang D. Optical determination of hydrogen peroxide by exploiting the peroxidase-like activity of AgVO3 nanobelts. Microchim Acta. 2016;183(1):457–63.CrossRefGoogle Scholar
  9. 9.
    Ghosh AB, Saha N, Sarkar A, Dutta AK, Biswas P, Nag K et al. Morphological tuning of Eu2O2S nanoparticles, manifestation of peroxidase-like activity and glucose assay use. New J Chem. 2016.Google Scholar
  10. 10.
    Song Y, Qu K, Zhao C, Ren J, Qu X. Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater. 2010;22(19):2206–10.CrossRefGoogle Scholar
  11. 11.
    Cai K, Lv Z, Chen K, Huang L, Wang J, Shao F, et al. Aqueous synthesis of porous platinum nanotubes at room temperature and their intrinsic peroxidase-like activity. Chem Commun. 2013;49(54):6024–6.CrossRefGoogle Scholar
  12. 12.
    Shi W, Wang Q, Long Y, Cheng Z, Chen S, Zheng H, et al. Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem Commun. 2011;47(23):6695–7.CrossRefGoogle Scholar
  13. 13.
    Mu J, Wang Y, Zhao M, Zhang L. Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles. Chem Commun. 2012;48(19):2540–2.CrossRefGoogle Scholar
  14. 14.
    Su L, Qin W, Zhang H, Rahman ZU, Ren C, Ma S, et al. The peroxidase/catalase-like activities of MFe2O4 (M = Mg, Ni, Cu) MNPs and their application in colorimetric biosensing of glucose. Biosens Bioelectron. 2015;63:384–91.CrossRefGoogle Scholar
  15. 15.
    Qian J, Yang X, Jiang L, Zhu C, Mao H, Wang K. Facile preparation of Fe3O4 nanospheres/reduced graphene oxide nanocomposites with high peroxidase-like activity for sensitive and selective colorimetric detection of acetylcholine. Sensors Actuators B Chem. 2014;201:160–6.CrossRefGoogle Scholar
  16. 16.
    Nirala NR, Abraham S, Kumar V, Bansal A, Srivastava A, Saxena PS. Colorimetric detection of cholesterol based on highly efficient peroxidase mimetic activity of graphene quantum dots. Sensors Actuators B Chem. 2015;218:42–50.CrossRefGoogle Scholar
  17. 17.
    Qiao F, Wang J, Ai S, Li L. As a new peroxidase mimetics: The synthesis of selenium doped graphitic carbon nitride nanosheets and applications on colorimetric detection of H2O2 and xanthine. Sensors Actuators B Chem. 2015;216:418–27.CrossRefGoogle Scholar
  18. 18.
    Ge S, Sun M, Liu W, Li S, Wang X, Chu C, et al. Disposable electrochemical immunosensor based on peroxidase-like magnetic silica–graphene oxide composites for detection of cancer antigen 153. Sensors Actuators B Chem. 2014;192:317–26.CrossRefGoogle Scholar
  19. 19.
    Liu H, Gu C, Xiong W, Zhang M. A sensitive hydrogen peroxide biosensor using ultra-small CuInS2 nanocrystals as peroxidase mimics. Sensors Actuators B Chem. 2015;209:670–6.CrossRefGoogle Scholar
  20. 20.
    Shi W, Fan H, Ai S, Zhu L. Honeycomb-like nitrogen-doped porous carbon supporting Pt nanoparticles as enzyme mimic for colorimetric detection of cholesterol. Sensors and Actuators B: Chemical. 2015.Google Scholar
  21. 21.
    Zhang T, Lu Y, Luo G. Synthesis of hierarchical iron hydrogen phosphate crystal as a robust peroxidase mimic for stable H2O2 detection. ACS Appl Mater Interfaces. 2014;6(16):14433–8.CrossRefGoogle Scholar
  22. 22.
    Ge S, Liu W, Liu H, Liu F, Yu J, Yan M, et al. Colorimetric detection of the flux of hydrogen peroxide released from living cells based on the high peroxidase-like catalytic performance of porous PtPd nanorods. Biosens Bioelectron. 2015;71:456–62.CrossRefGoogle Scholar
  23. 23.
    Ray C, Dutta S, Sarkar S, Sahoo R, Roy A, Pal T. Intrinsic peroxidase-like activity of mesoporous nickel oxide for selective cysteine sensing. J Mater Chem B. 2014;2(36):6097–105.CrossRefGoogle Scholar
  24. 24.
    Yang Z, Qian J, Yang X, Jiang D, Du X, Wang K, et al. A facile label-free colorimetric aptasensor for acetamiprid based on the peroxidase-like activity of hemin-functionalized reduced graphene oxide. Biosens Bioelectron. 2015;65:39–46.CrossRefGoogle Scholar
  25. 25.
    He S-B, Wu G-W, Deng H-H, Liu A-L, Lin X-H, Xia X-H, et al. Choline and acetylcholine detection based on peroxidase-like activity and protein antifouling property of platinum nanoparticles in bovine serum albumin scaffold. Biosens Bioelectron. 2014;62:331–6.CrossRefGoogle Scholar
  26. 26.
    Ni P, Dai H, Wang Y, Sun Y, Shi Y, Hu J, et al. Visual detection of melamine based on the peroxidase-like activity enhancement of bare gold nanoparticles. Biosens Bioelectron. 2014;60:286–91.CrossRefGoogle Scholar
  27. 27.
    Hong L, Liu A-L, Li G-W, Chen W, Lin X-H. Chemiluminescent cholesterol sensor based on peroxidase-like activity of cupric oxide nanoparticles. Biosens Bioelectron. 2013;43:1–5.CrossRefGoogle Scholar
  28. 28.
    Zhang D, Chen Z, Omar H, Deng L, Khashab NM. Colorimetric peroxidase mimetic assay for uranyl detection in sea water. ACS Appl Mater Interfaces. 2015;7(8):4589–94.CrossRefGoogle Scholar
  29. 29.
    Myant NB. The biology of cholesterol and related steroids. Butterworth-Heinemann; 2014.Google Scholar
  30. 30.
    Ansari AA, Kaushik A, Solanki PR, Malhotra BD. Electrochemical cholesterol sensor based on tin oxide‐chitosan nanobiocomposite film. Electroanalysis. 2009;21(8):965–72.CrossRefGoogle Scholar
  31. 31.
    Hayat A, Haider W, Raza Y, Marty JL. Colorimetric cholesterol sensor based on peroxidase like activity of zinc oxide nanoparticles incorporated carbon nanotubes. Talanta. 2015;143:157–61.CrossRefGoogle Scholar
  32. 32.
    Arya SK, Solanki PR, Singh S, Kaneto K, Pandey MK, Datta M, et al. Poly-(3-hexylthiophene) self-assembled monolayer based cholesterol biosensor using surface plasmon resonance technique. Biosens Bioelectron. 2007;22(11):2516–24.CrossRefGoogle Scholar
  33. 33.
    Lin Y-T, Wu S-S, Wu H-L. Highly sensitive analysis of cholesterol and sitosterol in foods and human biosamples by liquid chromatography with fluorescence detection. J Chromatogr A. 2007;1156(1):280–7.CrossRefGoogle Scholar
  34. 34.
    Luckham PF, Rossi S. The colloidal and rheological properties of bentonite suspensions. Adv Colloid Interface Sci. 1999;82(1):43–92.CrossRefGoogle Scholar
  35. 35.
    Viraraghavan T, de Maria Alfaro F. Adsorption of phenol from wastewater by peat, fly ash and bentonite. J Hazard Mater. 1998;57(1–3):59–70. doi: 10.1016/S0304-3894(97)00062-9.CrossRefGoogle Scholar
  36. 36.
    Bereket G, Arog AZ, Özel MZ. Removal of Pb(II), Cd(II), Cu(II), and Zn(II) from aqueous solutions by adsorption on bentonite. J Colloid Interface Sci. 1997;187(2):338–43. doi: 10.1006/jcis.1996.4537.CrossRefGoogle Scholar
  37. 37.
    Josephy PD, Eling T, Mason RP. The horseradish peroxidase-catalyzed oxidation of 3, 5, 3', 5'-tetramethylbenzidine. Free radical and charge-transfer complex intermediates. J Biol Chem. 1982;257(7):3669–75.Google Scholar
  38. 38.
    Daoud WA, Xin JH, Szeto YS. Polyethylenedioxythiophene coatings for humidity, temperature and strain sensing polyamide fibers. Sensors Actuators B: Chem. 2005;109(2):329–33. doi: 10.1016/j.snb.2004.12.067.CrossRefGoogle Scholar
  39. 39.
    Heywang G, Jonas F. Poly (alkylenedioxythiophene) s—new, very stable conducting polymers. Adv Mater. 1992;4(2):116–8.CrossRefGoogle Scholar
  40. 40.
    Dalziel K. Physical significance of Michaelis constants. Nature. 1962;196(4860):1203–5.CrossRefGoogle Scholar
  41. 41.
    Sun L, Qin Y, Cao Q, Hu B, Huang Z, Ye L, et al. Novel photocatalytic antibacterial activity of TiO2 microspheres exposing 100% reactive {111} facets. Chem Commun. 2011;47(47):12628–30.CrossRefGoogle Scholar
  42. 42.
    Zhang L, Han L, Hu P, Wang L, Dong S. TiO2 nanotube arrays: intrinsic peroxidase mimetics. Chem Commun. 2013;49(89):10480–2.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • K. Aneesh
    • 1
    • 2
  • Chiranjeevi Srinivasa Rao Vusa
    • 2
  • Sheela Berchmans
    • 1
    • 2
    Email author
  1. 1.Academy of Scientific and Innovative Research (AcSIR)ChennaiIndia
  2. 2.CSIR-Central Electrochemical Research InstituteKaraikudiIndia

Personalised recommendations