Analytical and Bioanalytical Chemistry

, Volume 408, Issue 22, pp 6141–6151 | Cite as

Identification of the oleic acid ethanolamide (OEA) isomer cis-vaccenic acid ethanolamide (VEA) as a highly abundant 18:1 fatty acid ethanolamide in blood plasma from rats and humans

  • Waldemar Röhrig
  • Reiner Waibel
  • Christopher Perlwitz
  • Monika Pischetsrieder
  • Tobias Hoch
Research Paper

Abstract

The endocannabinoid system is important in various physiological pathways, especially the regulation of food intake. It consists of endocannabinoids like 2-arachidonoyl-glycerol (2-AG) or the fatty acid ethanolamide archachidonoyl-ethanolamide (AEA) with binding affinity to cannabinoid receptors. Further, fatty acid ethanolamides (FAEAs) influence the endocannabinoid system without affecting cannabinoid receptors by using independent physiological pathways. Among FAEAs, oleic acid ethanolamide (OEA) gained importance because of its promising ability to reduce food intake. By ultrahigh-performance liquid chromatography–electrospray ionization–tandem mass spectrometry (UHPLC–ESI–MS/MS), we detected a chromatographically separated molecule in plasma samples from rats and humans with identical mass and fragmentation patterns as those of OEA. Via synthesis and extensive analysis of ethanolamides of different cis/trans- and position isomers of oleic acid (cis9-18:1), we could identify the unknown molecule as vaccenic acid (cis11-18:1) ethanolamide (VEA). In this study we identified VEA as the most abundant 18:1 FAEA in rat plasma and the second most abundant 18:1 FAEA in human plasma.

Keywords

OEA VEA Fatty acid ethanolamides Endocannabinoid system LC–MS/MS 

Supplementary material

216_2016_9720_MOESM1_ESM.pdf (291 kb)
ESM 1(PDF 290 kb)

References

  1. 1.
    Devane WA, Dysarz FA, Johnson MR, Melvin LS, Howlett AC. Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol. 1988;34(5):605–13.Google Scholar
  2. 2.
    Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature. 1993;365(6441):61–5.CrossRefGoogle Scholar
  3. 3.
    Piomelli D. The molecular logic of endocannabinoid signalling. Nat Rev Neurosci. 2003;4(11):873–84.CrossRefGoogle Scholar
  4. 4.
    Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR, et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol. 1995;50(1):83–90.CrossRefGoogle Scholar
  5. 5.
    Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science. 1992;258(5090):1946–9.CrossRefGoogle Scholar
  6. 6.
    Hanus L, Abu-Lafi S, Fride E, Breuer A, Vogel Z, Shalev DE, et al. 2-arachidonyl glyceryl ether, an endogenous agonist of the cannabinoid CB1 receptor. Proc Natl Acad Sci U S A. 2001;98(7):3662–5.CrossRefGoogle Scholar
  7. 7.
    Bisogno T, Melck D, Bobrov M, Gretskaya NM, Bezuglov VV, Petrocellis L, et al. N-acyl-dopamines: novel synthetic CB(1) cannabinoid-receptor ligands and inhibitors of anandamide inactivation with cannabimimetic activity in vitro and in vivo. Biochem J. 2000;351(Pt 3):817–24.CrossRefGoogle Scholar
  8. 8.
    Porter AC, Sauer J-M, Knierman MD, Becker GW, Berna MJ, Bao J, et al. Characterization of a novel endocannabinoid, virodhamine, with antagonist activity at the CB1 receptor. J Pharmacol Exp Ther. 2002;301(3):1020–4.CrossRefGoogle Scholar
  9. 9.
    Burston JJ, Woodhams SG. Endocannabinoid system and pain: an introduction. Proc Nutr Soc. 2014;73(1):106–17.CrossRefGoogle Scholar
  10. 10.
    Pérez-Morales M, La Herrán-Arita AK, Méndez-Díaz M, Ruiz-Contreras AE, Drucker-Colín R, Prospéro-García O. 2-AG into the lateral hypothalamus increases REM sleep and cFos expression in melanin concentrating hormone neurons in rats. Pharmacol Biochem Behav. 2013;108:1–7.CrossRefGoogle Scholar
  11. 11.
    Di Marzo V, Ligresti A, Cristino L. The endocannabinoid system as a link between homoeostatic and hedonic pathways involved in energy balance regulation. Int J Obes. 2009;33 Suppl 2:S18–24.CrossRefGoogle Scholar
  12. 12.
    Soria-Gómez E, Bellocchio L, Reguero L, Lepousez G, Martin C, Bendahmane M, et al. The endocannabinoid system controls food intake via olfactory processes. Nat Neurosci. 2014;17(3):407–15.CrossRefGoogle Scholar
  13. 13.
    Piomelli D. A fatty gut feeling. Trends Endocrinol Metab. 2013. doi:10.1016/j.tem.2013.03.001.Google Scholar
  14. 14.
    Fu J, Astarita G, Gaetani S, Kim J, Cravatt BF, Mackie K, et al. Food intake regulates oleoylethanolamide formation and degradation in the proximal small intestine. J Biol Chem. 2007;282(2):1518–28.CrossRefGoogle Scholar
  15. 15.
    Souci SW, Fachmann W, Kraut H. Food composition and nutrition tables. 7th ed. Stuttgart: Wissenschaftliche Verlagsgesellschaft; 2008.Google Scholar
  16. 16.
    Ding L, Wang Y, Kreuzer M, Guo X, Mi J, Gou Y, et al. Seasonal variations in the fatty acid profile of milk from yaks grazing on the Qinghai-Tibetan plateau. J Dairy Res. 2013;80(04):410–7.CrossRefGoogle Scholar
  17. 17.
    Albenzio M, Santillo A, Caroprese M, Ruggieri D, Napolitano F, Sevi A. Physicochemical properties of Scamorza ewe milk cheese manufactured with different probiotic cultures. J Dairy Sci. 2013;96(5):2781–91.CrossRefGoogle Scholar
  18. 18.
    Pintus S, Murru E, Carta G, Cordeddu L, Batetta B, Accossu S, et al. Sheep cheese naturally enriched in α-linolenic, conjugated linoleic and vaccenic acids improves the lipid profile and reduces anandamide in the plasma of hypercholesterolaemic subjects. Br J Nutr. 2013;109(08):1453–62.CrossRefGoogle Scholar
  19. 19.
    Sahib NG, Anwar F, Gilani A-H, Hamid AA, Saari N, Alkharfy KM. Coriander (Coriandrum sativum L.): a potential source of high-value components for functional foods and nutraceuticals—a review. Phytother Res. 2013;27(10):1439–56.Google Scholar
  20. 20.
    Ellenbracht F, Barz W, Mangold HK. Unusual fatty acids in the lipids from organs and cell cultures of Petroselinum crispum. Planta. 1980;150(2):114–9.CrossRefGoogle Scholar
  21. 21.
    Gebauer SK, Chardigny J-M, Jakobsen MU, Lamarche B, Lock AL, Proctor SD, et al. Effects of ruminant trans fatty acids on cardiovascular disease and cancer: a comprehensive review of epidemiological, clinical, and mechanistic studies. Adv Nutr. 2011;2(4):332–54.CrossRefGoogle Scholar
  22. 22.
    Sommerfeld M. Trans unsaturated fatty acids in natural products and processed foods. Prog Lipid Res. 1983;22(3):221–33.CrossRefGoogle Scholar
  23. 23.
    Richter EK, Shawish KA, Scheeder MRL, Colombani PC. Trans fatty acid content of selected Swiss foods: the TransSwissPilot study. J Food Compos Anal. 2009;22(5):479–84.CrossRefGoogle Scholar
  24. 24.
    Gouveia-Figueira S, Nording ML. Development and validation of a sensitive UPLC-ESI-MS/MS method for the simultaneous quantification of 15 endocannabinoids and related compounds in milk and other biofluids. Anal Chem. 2014;86(2):1186–95.CrossRefGoogle Scholar
  25. 25.
    Balvers MG, Wortelboer HM, Witkamp RF, Verhoeckx KC. Liquid chromatography-tandem mass spectrometry analysis of free and esterified fatty acid N-acyl ethanolamines in plasma and blood cells. Anal Biochem. 2013;434(2):275–83.CrossRefGoogle Scholar
  26. 26.
    Zoerner AA, Batkai S, Suchy MT, Gutzki FM, Engeli S, Jordan J, et al. Simultaneous UPLC-MS/MS quantification of the endocannabinoids 2-arachidonoyl glycerol (2AG), 1-arachidonoyl glycerol (1AG), and anandamide in human plasma: minimization of matrix-effects, 2AG/1AG isomerization and degradation by toluene solvent extraction. J Chromatogr B Analyt Technol Biomed Life Sci. 2012;883-884:161–71.CrossRefGoogle Scholar
  27. 27.
    Lam PMW, Marczylo TH, Konje JC. Simultaneous measurement of three N-acylethanolamides in human bio-matrices using ultra performance liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2010;398(5):2089–97.CrossRefGoogle Scholar
  28. 28.
    Di Marzo V, Wang J. Endocannabinoidome. London: Academic Press, an imprint of Elsevier; 2015.Google Scholar
  29. 29.
    Wang X, Chen Y, Jin Q, Huang J, Wang X. Synthesis of linoleoyl ethanolamide. J Oleo Sci. 2013;62(6):427–33.CrossRefGoogle Scholar
  30. 30.
    Dunkelblum E, Tan SH, Silk PJ. Double-bond location in monounsaturated fatty acids by dimethyl disulfide derivatization and mass spectrometry: application to analysis of fatty acids in pheromone glands of four Lepidoptera. J Chem Ecol. 1985;11(3):265–77.CrossRefGoogle Scholar
  31. 31.
    Zoerner AA, Gutzki FM, Batkai S, May M, Rakers C, Engeli S, et al. Quantification of endocannabinoids in biological systems by chromatography and mass spectrometry: a comprehensive review from an analytical and biological perspective. Biochim Biophys Acta. 2011;1811(11):706–23.CrossRefGoogle Scholar
  32. 32.
    Zoerner AA, Gutzki FM, Suchy MT, Beckmann B, Engeli S, Jordan J, et al. Targeted stable-isotope dilution GC-MS/MS analysis of the endocannabinoid anandamide and other fatty acid ethanol amides in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877(26):2909–23.CrossRefGoogle Scholar
  33. 33.
    Fanelli F, Di Lallo VD, Belluomo I, Iasio R, Baccini M, Casadio E, et al. Estimation of reference intervals of five endocannabinoids and endocannabinoid related compounds in human plasma by two dimensional-LC/MS/MS. J Lipid Res. 2012;53(3):481–93.CrossRefGoogle Scholar
  34. 34.
    Rodríguez de Fonseca F, Navarro M, Gómez R, Escuredo L, Nava F, Fu J, et al. An anorexic lipid mediator regulated by feeding. Nature. 2001;414(6860):209–12.CrossRefGoogle Scholar
  35. 35.
    Romano A, Coccurello R, Giacovazzo G, Bedse G, Moles A, Gaetani S. Oleoylethanolamide: a novel potential pharmacological alternative to cannabinoid antagonists for the control of appetite. Biomed Res Int. 2014;2014:203425.Google Scholar
  36. 36.
    Romano A, Karimian Azari E, Tempesta B, Mansouri A, Di Micioni Bonaventura MV, Ramachandran D, et al. High dietary fat intake influences the activation of specific hindbrain and hypothalamic nuclei by the satiety factor oleoylethanolamide. Physiol Behav. 2014;136:55–62.CrossRefGoogle Scholar
  37. 37.
    Lam PM, Marczylo TH, El-Talatini M, Finney M, Nallendran V, Taylor AH, et al. Ultra performance liquid chromatography tandem mass spectrometry method for the measurement of anandamide in human plasma. Anal Biochem. 2008;380(2):195–201.CrossRefGoogle Scholar
  38. 38.
    Phillips APBR. Rearrangement between primary ethanolamides of carboxylic acids and corresponding aminoethylesters. J Am Chem Soc. 1947;69(2):200–4.CrossRefGoogle Scholar
  39. 39.
    Ottria R, Casati S, Ciuffreda P. (1)H, (13)C and (15)N NMR assignments for N- and O-acylethanolamines, important family of naturally occurring bioactive lipid mediators. Magn Reson Chem. 2012;50(12):823–8.CrossRefGoogle Scholar
  40. 40.
    Giuffrida A, Rodríguez de Fonseca F, Piomelli D. Quantification of bioactive acylethanolamides in rat plasma by electrospray mass spectrometry. Anal Biochem. 2000;280(1):87–93.CrossRefGoogle Scholar
  41. 41.
    Balvers MG, Verhoeckx KC, Witkamp RF. Development and validation of a quantitative method for the determination of 12 endocannabinoids and related compounds in human plasma using liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877(14-15):1583–90.CrossRefGoogle Scholar
  42. 42.
    Ozalp A, Barroso B. Simultaneous quantitative analysis of N-acylethanolamides in clinical samples. Anal Biochem. 2009;395(1):68–76.CrossRefGoogle Scholar
  43. 43.
    Roy U, Loreau O, Balazy M. Cytochrome P450/NADPH-dependent formation of trans epoxides from trans-arachidonic acids. Bioorg Med Chem Lett. 2004;14(4):1019–22.CrossRefGoogle Scholar
  44. 44.
    Jiang H, Kruger N, Lahiri DR, Wang D, Vatèle JM, Balazy M. Nitrogen dioxide induces cis-trans-isomerization of arachidonic acid within cellular phospholipids. Detection of trans-arachidonic acids in vivo. J Biol Chem. 1999;274(23):16235–41.CrossRefGoogle Scholar
  45. 45.
    Devillard E, McIntosh FM, Paillard D, Thomas NA, Shingfield KJ, Wallace RJ. Differences between human subjects in the composition of the faecal bacterial community and faecal metabolism of linoleic acid. Microbiology. 2009;155(Pt 2):513–20.CrossRefGoogle Scholar
  46. 46.
    Devillard E, McIntosh FM, Duncan SH, Wallace RJ. Metabolism of linoleic acid by human gut bacteria: different routes for biosynthesis of conjugated linoleic acid. J Bacteriol. 2007;189(6):2566–70.CrossRefGoogle Scholar
  47. 47.
    Laverroux S, Glasser F, Gillet M, Joly C, Doreau M. Isomerization of vaccenic acid to cis and trans C18:1 isomers during biohydrogenation by rumen microbes. Lipids. 2011;46(9):843–50.CrossRefGoogle Scholar
  48. 48.
    Shibahara A, Yamamoto K, Takeoka M, Kinoshita A, Kajimoto G, Nakayama T, et al. Novel pathways of oleic and cis-vaccenic acid biosynthesis by an enzymatic double-bond shifting reaction in higher plants. FEBS Lett. 1990;264(2):228–30.CrossRefGoogle Scholar
  49. 49.
    Matsuzaka T, Shimano H, Yahagi N, Kato T, Atsumi A, Yamamoto T, et al. Crucial role of a long-chain fatty acid elongase, Elovl6, in obesity-induced insulin resistance. Nat Med. 2007;13(10):1193–202.CrossRefGoogle Scholar
  50. 50.
    Matsuzaka T, Shimano H. Elovl6: a new player in fatty acid metabolism and insulin sensitivity. J Mol Med (Berlin). 2009;87(4):379–84.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Waldemar Röhrig
    • 1
  • Reiner Waibel
    • 2
  • Christopher Perlwitz
    • 1
  • Monika Pischetsrieder
    • 1
  • Tobias Hoch
    • 1
  1. 1.Food Chemistry Unit, Department of Chemistry and Pharmacy, Emil Fischer CenterFriedrich-Alexander Universität Erlangen-Nürnberg (FAU)ErlangenGermany
  2. 2.Medicinal Chemistry Unit, Department of Chemistry and Pharmacy, Emil Fischer CenterFriedrich-Alexander Universität Erlangen-Nürnberg (FAU)ErlangenGermany

Personalised recommendations