Analytical and Bioanalytical Chemistry

, Volume 408, Issue 21, pp 5895–5903 | Cite as

Evaluation of the degradation of acetaminophen by the filamentous fungus Scedosporium dehoogii using carbon-based modified electrodes

  • Serge Foukmeniok Mbokou
  • Maxime Pontié
  • Bienvenue Razafimandimby
  • Jean-Philippe Bouchara
  • Evangéline Njanja
  • Ignas Tonle KenfackEmail author
Research Paper


The nonpathogenic filamentous fungus Scedosporium dehoogii was used for the first time to study the electrochemical biodegradation of acetaminophen (APAP). A carbon fiber microelectrode (CFME) modified by nickel tetrasulfonated phthalocyanine (p-NiTSPc) and a carbon paste electrode (CPE) modified with coffee husks (CH) were prepared to follow the kinetics of APAP biodegradation. The electrochemical response of APAP at both electrodes was studied by cyclic voltammetry and square wave voltammetry. p-NiTSPc-CFME was suitable to measure high concentrations of APAP, whereas CH–CPE gave rise to high current densities but was subject to the passivation phenomenon. p-NiTSPc–CFME was then successfully applied as a sensor to describe the kinetics of APAP biodegradation: this was found to be of first order with a kinetics constant of 0.11 day−1 (at 25 °C) and a half-life of 6.30 days. APAP biodegradation by the fungus did not lead to the formation of p-aminophenol (PAP) and hydroquinone (HQ) that are carcinogenic, mutagenic, and reprotoxic (CMR).

Graphical Abstract

The kinetics of APAP biodegradation, followed by a poly-nickel tetrasulfonated phtalocyanine modified carbon fiber microelectrode


Acetaminophen Biodegradation Kinetics Scedosporium dehoogii Carbon-based electrodes 



I. K. Tonle acknowledges the support of the Alexander von Humboldt Foundation (Germany). S. F. Mbokou was supported by ARIANES program (University of Angers, France).

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Supplementary material

216_2016_9704_MOESM1_ESM.pdf (112 kb)
ESM 1 (PDF 112 kb)


  1. 1.
    Bannwarth B. Acetaminophen or NSAIDs for the treatment of osteoarthritis. Res Clin Rheumatol. 2006;20:117–29.CrossRefGoogle Scholar
  2. 2.
    Espinosa BM, Ruiz-Sánchez AJ, Sánchez RF, Bosch OC. Determination of paracetamol: historical evolution. J Pharm Biomed Anal. 2006;42:291–321.CrossRefGoogle Scholar
  3. 3.
    Martin FL, McLean AE. Comparison of paracetamol-induced hepatotoxicity in the rat in vivo with progression of cell injury in vitro in rat liver slices. Drug Chem Toxicol. 1998;21:477–94.CrossRefGoogle Scholar
  4. 4.
    De Gusseme B, Vanhaecke L, Verstraete W, Boon N. Degradation of acetaminophen by Delftia tsuruhatensis and Pseudomonas aeruginosa in a membrane bioreactor. Water Res. 2011;45:1829–37.CrossRefGoogle Scholar
  5. 5.
    Kim DS, Cho J, Kim SI, Vanderford JB, Snyder AS. Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Res. 2007;41:10–3.Google Scholar
  6. 6.
    Andreozzi R, Caprio V, Marotta R, Vogna D. Paracetamol oxidation from aqueous solutions by means of ozonation and H2O2/UV system. Water Res. 2003;37:993–1004.CrossRefGoogle Scholar
  7. 7.
    Li GT, Liu XJ, Bai BR, Ohandja GD, Wong SF. Biodegradation of organonitriles by adapted activated sludge consortium with acetonitrile-degrading microorganisms. Water Res. 2007;41:3465–73.CrossRefGoogle Scholar
  8. 8.
    Shijin W, Lili Z, Jianmeng C. Paracetamol in the environment and its degradation by microorganisms. Appl Microbiol Biotechnol. 2012;96:875–84.CrossRefGoogle Scholar
  9. 9.
    Chen YC, Chen CS, Fingas M, Kao MC. Biodegradation of propionitrile by Klebsiella oxytoca immobilized in alginate and cellulose triacetate gel. J Hazard Mater. 2010;177:856–63.CrossRefGoogle Scholar
  10. 10.
    Wu S, Zhang L, Chen J. Paracetamol in the environment and its degradation by microorganisms. Appl Microbiol Biotechnol. 2012;96:875–84.CrossRefGoogle Scholar
  11. 11.
    Lili Z, Jun H, Runye Z, Qingwei Z, Jianmeng C. Degradation of paracetamol by pure bacterial cultures and their microbial consortium. Appl Microbiol Biotechnol. 2013;97:3687–98.CrossRefGoogle Scholar
  12. 12.
    Clauben M, Schmidt S. Biodegradation of phenol and p-cresol by the hyphomycete Scedosporium apiospermum. Res Microbiol. 1998;149:399–406.CrossRefGoogle Scholar
  13. 13.
    Cortez JK, Roilides E, Quiroz-Telles F, Meletiadis J, Antachopoulos C, Knudsen T, et al. Infections caused by Scedosporium spp. Clin Microbiol Rev. 2008;21:157–97.CrossRefGoogle Scholar
  14. 14.
    Kumar KG, Letha R. Determination of paracetamol in pure form and in dosage forms using N, N-dibromo dimethylhydantoin. J Pharm Biomed Anal. 1997;15:1725–8.CrossRefGoogle Scholar
  15. 15.
    Burgot C, Auffret F, Burgot JL. Determination of acetaminophen by thermometric titrimetry. Anal Chim Acta. 1997;343:125–8.CrossRefGoogle Scholar
  16. 16.
    Pulgarin JAM, Bermejo LFG. Flow-injection stopped-flow spectrofluorimetric kinetic determination of paracetamol based on its oxidation reaction by hexacyanoferrate (III). Anal Chim Acta. 1996;333:59–69.CrossRefGoogle Scholar
  17. 17.
    Easwaramoorthy D, Yu YC, Huang HJ. Chemiluminescence detection of paracetamol by a luminol-permanganate based reaction. Anal Chim Acta. 2001;439:95–100.CrossRefGoogle Scholar
  18. 18.
    Mohamed FA, Abdallah MA, Shammat SM. Selective spectrophotometric determination of p-aminophenol and acetaminophen. Talanta. 1997;44:61–8.CrossRefGoogle Scholar
  19. 19.
    Bloomfield MS. A sensitive and rapid assay for 4-aminophenol in paracetamol drug and tablet formulation, by flow injection analysis with spectrophotometric detection. Talanta. 2002;58:1301–10.CrossRefGoogle Scholar
  20. 20.
    Sirajuddin KAR, Shah A, Bhanger MI, Niaz A, Mahesar S. Simpler spectrophotometric assay of paracetamol in tablets and urine samples. Spectrochim Acta Part A. 2007;68:747–51.CrossRefGoogle Scholar
  21. 21.
    Peng W, Li T, Li H, Wang E. Direct injection of urine and determination of acetaminophen by micellar liquid chromatography with wall-Jet cell/carbon fiber microelectrode. Anal Chim Acta. 1994;298:415–21.CrossRefGoogle Scholar
  22. 22.
    Gioia MG, Andreatta P, Boschetti S, Gatti R. Development and validation of a liquid chromatographic method for the determination of ascorbic acid, dehydroascorbic acid and acetaminophen in pharmaceuticals. Pharm Biomed Anal. 2008;48:331–9.CrossRefGoogle Scholar
  23. 23.
    Sun J, Schnackenberg LK, Holland RD, Schmitt TC, Cantor GH, Dragan YP, et al. Metabonomics evaluation of urine from rats given acute and chronic doses of acetaminophen using NMR and UPLC/MS. J Chromato B. 2008;871:328–40.CrossRefGoogle Scholar
  24. 24.
    Kumar SG, Tang CF, Chen SM. Electroanalytical determination of acetaminophen using nano-TiO2/polymer coated electrode in the presence of dopamine. Talanta. 2008;76:997–1005.CrossRefGoogle Scholar
  25. 25.
    Mazloum AM, Beitollahi H, Amini MK, Mirkhalaf F, Mirjalili BBF. A highly sensitive nanostructure-based electrochemical sensor for electrocatalytic determination of norepinephrine in the presence of acetaminophen and tryptophan. Biosens Bioelectron. 2011;26:2102–6.CrossRefGoogle Scholar
  26. 26.
    Habibi B, Jahanbakhshi M, Pournaghi AMH. Differential pulse voltammetric simultaneous determination of acetaminophen and ascorbic acid using single-walled carbon nanotube-modified carbon-ceramic electrode. Anal Biochem. 2000;411:167–75.CrossRefGoogle Scholar
  27. 27.
    Beitollahi H, Mohammadi S. Selective voltammetric determination of norepinephrine in the presence of acetaminophen and tryptophan on the surface of a modified carbon nanotube paste electrode. Mater Sci Eng C. 2013;33:3214–9.CrossRefGoogle Scholar
  28. 28.
    Beitollahi H, Sheikhshoaie I. Selective voltammetric determination of norepinephrine in the presence of acetaminophen and folic acid at a modified carbon nanotube paste electrode. J Electroanal Chem. 2011;661:336–42.CrossRefGoogle Scholar
  29. 29.
    Shahrokhian S, Asadian E. Simultaneous voltammetric determination of ascorbic acid, acetaminophen and isoniazid using thionine immobilized multi-walled carbon nanotube modified carbon paste electrode. Electrochim Acta. 2010;55:666–72.CrossRefGoogle Scholar
  30. 30.
    Tonle IK, Ngameni E, Tchieno MMF, Walcarius A. Organoclay-modified electrodes: preparation, characterization and recent electroanalytical applications. J Solid State Electrochem. 2015;19:1949–73.CrossRefGoogle Scholar
  31. 31.
    Sanghavi JB, Srivastava KA. Simultaneous voltammetry determination of acetaminophen, aspirin and caffeine using an in situ surfactant-modified multiwalled carbon nanotube paste electrode. Electrochim Acta. 2010;55:8638–48.CrossRefGoogle Scholar
  32. 32.
    Amiri-Aref M, Raoof JB, Ojani R. A highly sensitive electrochemical sensor for simultaneous voltammetric determination of noradrenaline, acetaminophen, xanthine and caffeine based on a flavonoid nanostructured modified glassy carbon electrode. Sens Actuators B. 2014;192:634–41.CrossRefGoogle Scholar
  33. 33.
    Madrakian T, Haghshenas E, Afkhami A. Simultaneous determination of tyrosine, acetaminophen and ascorbic acid using gold nanoparticles/multiwalled carbon nanotube/glassy carbon electrode by differential pulse voltammetric method. Sens Actuators B. 2014;193:451–60.CrossRefGoogle Scholar
  34. 34.
    Beitollahi H, Mohadesi A, Mohammadi S, Akbari A. Electrochemical behavior of a carbon paste electrode modified with 5-amino-3′,4′-dimethyl-biphenyl-2-ol/carbon nanotube and its application for simultaneous determination of isoproterenol, acetaminophen and N-acetylcysteine. Electrochim Acta. 2012;68:220–6.CrossRefGoogle Scholar
  35. 35.
    Beitollahi H, Raoof J-B, Hosseinzadeh R. Fabrication of a nanostructure-based electrochemical sensor for simultaneous determination of N-acetylcysteine and acetaminophen. Talanta. 2011;85:2128–34.CrossRefGoogle Scholar
  36. 36.
    Moghaddam HM, Beitollahi H. Simultaneous voltammetric determination of norepinephrine and aacetaminophen at the surface of a modified carbon nanotube paste electrode. Int J Electrochem Sci. 2011;6:6503–13.Google Scholar
  37. 37.
    Beitollahi H, Sheikhshoaie I. Novel nanostructure-based electrochemical sensor for simultaneous determination of dopamine and acetaminophen. Mater Sci Eng C. 2012;32:375–80.CrossRefGoogle Scholar
  38. 38.
    Shahmiri MR, Bahari A, Karimi MH, Hosseinzadeh R, Mirnia N. Ethynylferrocene-NiO/MWCNT nanocomposite modified carbon paste electrode as a novel voltammetric sensor for simultaneous determination of glutathione and acetaminophen. Sens Actuators B. 2013;177:70–7.CrossRefGoogle Scholar
  39. 39.
    Mashhadizadeh MH, Rasouli F. Design of a new carbon paste electrode modified with TiO2 nanoparticles to use in an electrochemical study of codeine and simultaneous determination of codeine and acetaminophen in human plasma serum samples. Electroanalysis. 2014;26:1–11.CrossRefGoogle Scholar
  40. 40.
    Sharifian S, Nezamzadeh EA. Modification of carbon paste electrode with Fe(III)-clinoptilolite nano-particles for simultaneous voltammetric determination of acetaminophen and ascorbic acid. Mater Sci Eng C. 2016;58:510–20.CrossRefGoogle Scholar
  41. 41.
    Tonle KI, Ngameni E, Walcarius A. Preconcentration and voltammetric analysis of mercury(II) at a carbon paste electrode modified with natural smectite-type clays grafted with organic chelating groups. Sens Actuators B. 2005;110:195–203.CrossRefGoogle Scholar
  42. 42.
    Pontié M, Sikpo L, Thouand G, Lahan R, Tapsoba I, Mallet R, et al. Direct electroanalysis of p-nitrophenol (PNP) in estuarine and surface waters by a high sensitive type C/p-NiTSPc coating carbon fiber microelectrode. Electroanalysis. 2011;23:433–41.CrossRefGoogle Scholar
  43. 43.
    Pontié M, Lecture H, Bedioui F. Improvement in the performance of a nickel complex-based electrochemical sensor for the detection of nitric oxide in solution. Sens Actuators B Chem. 1999;56:1–5.CrossRefGoogle Scholar
  44. 44.
    Bedioui F, Trevin S, Devynck J, Lantoine F, Brunet A, Devynck MA. Elaboration and use of nickel planar macrocyclic complex-based sensors for the direct electrochemical measurement of nitric oxide in biological media. Biosens Bioelectron. 1997;12:205–12.CrossRefGoogle Scholar
  45. 45.
    Ghoreishi MS, Behpour M, Sadeghzaded S, Golestaneb M. Electrochemical determination of acetaminophen in different pharmaceutical forms with gold nanoparticles carbon paste electrode. Acta Chim Slovenica. 2011;58:69–74.Google Scholar
  46. 46.
    Babaei A, Dehdashti A, Afrasiabi M. Development of a method for a sensitive simultaneous determination of dopamine and paracetamol in biological samples and pharmaceutical preparation. Int J Electrochem. 2011;452629:1–6.CrossRefGoogle Scholar
  47. 47.
    Afkhamia A, Khoshsafara H, Bagherib H, Madrakiana T. Facile simultaneous electrochemical determination of codeine and acetaminophen in pharmaceutical samples and biological fluids bygraphene-CoFe2O4 nancomposite modified carbon paste electrode. Sens Actuators B. 2014;203:909–18.CrossRefGoogle Scholar
  48. 48.
    Li MQ, Jing LH. Electrochemical behaviour of acetaminophen and its detection on the PANI–MWCNTs composite modified electrode. Electrochim Acta. 2007;52:3250–7.CrossRefGoogle Scholar
  49. 49.
    Fanjul-Bolado P, Lamas-Ardisana PJ, Hernandez-Santos D, Costa-Garcia A. Electrochemical study and flow injection analysis of paracetamol in pharmaceutical formulations based on screen-printed electrodes and carbon nanotubes. Anal Chim Acta. 2009;638:133–8.CrossRefGoogle Scholar
  50. 50.
    Xu C, June Z, Qian X, Wensheng Y. A high performance electrochemical sensor for acetaminophen based on single-walled carbon nanotube-graphene nanosheet hybrid films. Sens Actuators B. 2012;161:648–54.CrossRefGoogle Scholar
  51. 51.
    Jinchun S, Ji Y, Junfen Z, Juan T, Li Z. Graphite oxide film-modified electrode as an electrochemical sensor for acetaminophen. Sens Actuators B. 2011;155:220–5.CrossRefGoogle Scholar
  52. 52.
    Biuck H, Mojtaba J, Mohammad HPA. Differential pulse voltammetric simultaneous determination of acetaminophen and ascorbic acid using single-walled carbon nanotube-modified carbon–ceramic electrode. Anal Biochem. 2011;411:167–75.CrossRefGoogle Scholar
  53. 53.
    Sbai M, Essis-Tome H, Gombert U, Breton T, Pontié M. Electrochemical stripping analysis of methyl-parathion (MPT) using carbon fiber microelectrodes (CFME) modified with combinations of poly-NiTSPc and nafion films. Sens Actuators B. 2007;124:368–75.CrossRefGoogle Scholar
  54. 54.
    Tajik S, Taher MA, Beitollahi H. Application of a new ferrocene-derivative modified-graphene paste electrode for simultaneous determination of isoproterenol, acetaminophen and theophylline. Sens Actuators B. 2014;197:228–36.CrossRefGoogle Scholar
  55. 55.
    Mazloum-Ardakani M, Beitollahi H, Amini MK, Mirkhalaf F, Abdollahi-Alibeik M. New strategy for simultaneous and selective voltammetric determination of norepinephrine, acetaminophen and folic acid using ZrO2 nanoparticles modified carbon paste electrode. Sens Actuators B. 2010;151:243–9.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Serge Foukmeniok Mbokou
    • 1
    • 2
    • 3
  • Maxime Pontié
    • 2
    • 3
  • Bienvenue Razafimandimby
    • 3
  • Jean-Philippe Bouchara
    • 3
  • Evangéline Njanja
    • 1
  • Ignas Tonle Kenfack
    • 1
    Email author
  1. 1.Electrochemistry and Chemistry of Materials, Department of ChemistryUniversity of DschangDschangCameroon
  2. 2.L’UNAM UniversitéAngers UniversityAngersFrance
  3. 3.L’UNAM UniversitéAngers UniversityAngersFrance

Personalised recommendations