Advertisement

Analytical and Bioanalytical Chemistry

, Volume 408, Issue 19, pp 5053–5074 | Cite as

Single Particle ICP-MS: Advances toward routine analysis of nanomaterials

  • Manuel D. MontañoEmail author
  • John W. Olesik
  • Angela G. Barber
  • Katie Challis
  • James F. Ranville
Review
Part of the following topical collections:
  1. Single-particle-ICP-MS Advances

Abstract

From its early beginnings in characterizing aerosol particles to its recent applications for investigating natural waters and waste streams, single particle inductively coupled plasma-mass spectrometry (spICP-MS) has proven to be a powerful technique for the detection and characterization of aqueous dispersions of metal-containing nanomaterials. Combining the high-throughput of an ensemble technique with the specificity of a single particle counting technique and the elemental specificity of ICP-MS, spICP-MS is capable of rapidly providing researchers with information pertaining to size, size distribution, particle number concentration, and major elemental composition with minimal sample perturbation. Recently, advances in data acquisition, signal processing, and the implementation of alternative mass analyzers (e.g., time-of-flight) has resulted in a wider breadth of particle analyses and made significant progress toward overcoming many of the challenges in the quantitative analysis of nanoparticles. This review provides an overview of spICP-MS development from a niche technique to application for routine analysis, a discussion of the key issues for quantitative analysis, and examples of its further advancement for analysis of increasingly complex environmental and biological samples.

Graphical Abstract

Single particle ICP-MS workflow for the analysis of suspended nanoparticles

Keywords

Single particle ICP-MS ICP-TOF-MS Engineered nanoparticles Environmental analysis Core-shell nanoparticles FFF-ICP-MS 

Notes

Acknowledgments

The authors acknowledge graduate student support from the National Science Foundation (CBET-1336168, -1512695), the Environmental Protection Agency (RD83558001). Postdoctoral support comes from the Center for the Environmental Implications of Nanotechnology.

Compliance with Ethical Standards

Conflicts of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Degueldre C, Favarger PY. Colloid analysis by single particle inductively coupled plasma-mass spectroscopy: a feasibility study. Colloids Surf A Physicochem Eng Aspects. 2003;217(1/3):137–42.CrossRefGoogle Scholar
  2. 2.
    Mattson S. The laws of soil colloidal behavior: I. Soil Sci. 1929;28(3):179–220.CrossRefGoogle Scholar
  3. 3.
    Myers HE. Physiochemical reactions between organic and inorganic soil colloids as related to aggregate formation. Soil Sci. 1937;44(5):331–60.CrossRefGoogle Scholar
  4. 4.
    Goldberg ED Marine geochemistry 1. Chemical scavengers of the sea. J Geology. 1954 249–265.Google Scholar
  5. 5.
    Krauskopf KB. Factors controlling the concentrations of thirteen rare metals in sea-water. Geochim Cosmochim Acta. 1956;9(1):1–B32.Google Scholar
  6. 6.
    Sillen LG The physical chemistry of sea water. Oceanography. American Association for the Advancement of Science, Washington, DC; 1961. pp. 549–581.Google Scholar
  7. 7.
    Sneddon J. Collection and atomic spectroscopic measurement of metal compounds in the atmosphere: a review. Talanta. 1983;30(9):631–48.CrossRefGoogle Scholar
  8. 8.
    Edwards HW. Direct determination of silver in air by atomic absorption spectrometry. Anal Chem. 1969;41(10):1172–5.CrossRefGoogle Scholar
  9. 9.
    Crider WL. Spectrothermal emission aerosol particle analyzer (Seapa). Rev Sci Instrum. 1968;39(2):212–5.CrossRefGoogle Scholar
  10. 10.
    Lorenz G. Method of and apparatus for use in measuring the particle size distribution and/or the concentration of particles in suspension in a gaseous dispersing medium. Google Patents; 1974.Google Scholar
  11. 11.
    Kawaguchi H, Fukasawa N, Mizuike A. Investigation of airborne particles by inductively coupled plasma emission spectrometry calibrated with monodisperse aerosols. Spectrochim Acta, Part B. 1986;41(12):1277–86.CrossRefGoogle Scholar
  12. 12.
    Bochert U, Dannecker W. On-line aerosol analysis by atomic emission spectroscopy. J Aerosol Sci. 1989;20(8):1525–8.CrossRefGoogle Scholar
  13. 13.
    Kaneco S, Nomizu T, Tanaka T, Mizutani N, Kawaguchi H. Optimization of operating conditions in individual airborne particle analysis by inductively coupled plasma mass spectrometry. Anal Sci. 1995;11(5):835–40.CrossRefGoogle Scholar
  14. 14.
    Nomizu T, Hayashi H, Hoshino N, Tanaka T, Kawaguchi H, Kitagawa K, et al. Determination of zinc in individual airborne particles by inductively coupled plasma mass spectrometry with digital signal processing. J Anal At Spectrom. 2002;17(6):592–5.CrossRefGoogle Scholar
  15. 15.
    Nomizu T, Kaneco S, Tanaka T, Yamamoto T, Kawaguchi H. Determination of femtogram amounts of zinc and lead in individual airborne particles by inductively coupled plasma mass spectrometry with direct air-sample introduction. Anal Sci. 1993;9(6):843–6.CrossRefGoogle Scholar
  16. 16.
    Nomizu T, Nakashima H, Hotta Y, Tanaka T, Kawaguchi H. Simultaneous measurement of the elemental content and size of airborne particles by inductively coupled plasma emission spectrometry combined with the laser light-scattering method. Anal Sci. 1992;8(4):527–31.CrossRefGoogle Scholar
  17. 17.
    Noble CA, Prather KA. Real-time single particle mass spectrometry: a historical review of a quarter century of the chemical analysis of aerosols. Mass Spectrom Rev. 2000;19(4):248–74.CrossRefGoogle Scholar
  18. 18.
    McCarthy JF, Zachara JM. Subsurface transport of contaminants. Environ Sci Technol. 1989;23(5):496–502.Google Scholar
  19. 19.
    Penrose WR, Polzer WL, Essington EH, Nelson DM, Orlandini KA. Mobility of plutonium and americium through a shallow aquifer in a semiarid region. Environ Sci Technol. 1990;24(2):228–34.CrossRefGoogle Scholar
  20. 20.
    Smith P, Degueldre C. Colloid-facilitated transport of radionuclides through fractured media. J Contam Hydrol. 1993;13(1):143–66.CrossRefGoogle Scholar
  21. 21.
    McCarthy J, Degueldre C. Characterization of environmental particles. Chelsea, MI: Lewis Publishers; 1993.Google Scholar
  22. 22.
    Degueldre C, Favarger PY. Thorium colloid analysis by single particle inductively coupled plasma-mass spectrometry. Talanta. 2004;62(5):1051–4.CrossRefGoogle Scholar
  23. 23.
    Degueldre C, Favarger P-Y, Bitea C. Zirconia colloid analysis by single particle inductively coupled plasma-mass spectrometry. Anal Chim Acta. 2004;518(1):137–42.CrossRefGoogle Scholar
  24. 24.
    Degueldre C, Favarger P-Y, Rosse R, Wold S. Uranium colloid analysis by single particle inductively coupled plasma-mass spectrometry. Talanta. 2006;68(3):623–8.CrossRefGoogle Scholar
  25. 25.
    Degueldre C, Favarger P-Y, Wold S. Gold colloid analysis by inductively coupled plasma-mass spectrometry in a single particle mode. Anal Chim Acta. 2006;555(2):263–8.CrossRefGoogle Scholar
  26. 26.
    Laborda F, Jimenez-Lamana J, Bolea E, Castillo JR. Selective identification, characterization and determination of dissolved silver(i) and silver nanoparticles based on single particle detection by inductively coupled plasma mass spectrometry. J Anal At Spectrom. 2011;26(7):1362–71.CrossRefGoogle Scholar
  27. 27.
    Hassellov M, Readman J, Ranville J, Tiede K. Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles. Ecotoxicology. 2008;17(5):344–61.CrossRefGoogle Scholar
  28. 28.
    Montano MD, Lowry GV, von der Kammer F, Blue J, Ranville JF. Current status and future direction for examining engineered nanoparticles in natural systems. Environ Chem. 2014;11:351–66. doi: 10.1071/EN14037.
  29. 29.
    Laborda F, Bolea E, Cepriá G, Gómez MT, Jiménez MS, Pérez-Arantegui J, et al. Detection, characterization, and quantification of inorganic engineered nanomaterials: a review of techniques and methodological approaches for the analysis of complex samples. Anal Chim Acta. 2016;904:10–32.CrossRefGoogle Scholar
  30. 30.
    Laborda F, Bolea E, Jimenez-Lamana J. Single particle inductively coupled plasma mass spectrometry: a powerful tool for nanoanalysis. Anal Chem. 2013;86(5):2270–8.CrossRefGoogle Scholar
  31. 31.
    Olesik JW, Gray PJ. Considerations for measurement of individual nanoparticles or microparticles by ICP-MS: determination of the number of particles and the analyte mass in each particle. J Anal At Spectrom. 2012;27(7):1143–55.CrossRefGoogle Scholar
  32. 32.
    Lee W-W, Chan W-T. Calibration of single-particle inductively coupled plasma-mass spectrometry (SP-ICP-MS). J Anal At Spectrom. 2015;30:1245–54. doi: 10.1039/C4JA00408F.
  33. 33.
    French JB, Etkin B, Jong R. Monodisperse dried microparticulate injector for analytical instrumentation. Anal Chem. 1994;66(5):685–91.CrossRefGoogle Scholar
  34. 34.
    Olesik JW, Hobbs SE. Monodisperse dried microparticulate injector: a new tool for studying fundamental processes in inductively coupled plasmas. Anal Chem. 1994;66(20):3371–8.CrossRefGoogle Scholar
  35. 35.
    Garcia CC, Murtazin A, Groh S, Horvatic V, Niemax K. Characterization of single Au and SiO 2 nano-and microparticles by ICP-OES using monodisperse droplets of standard solutions for calibration. J Anal At Spectrom. 2010;25(5):645–53.CrossRefGoogle Scholar
  36. 36.
    Gschwind S, Flamigni L, Koch J, Borovinskaya O, Groh S, Niemax K, et al. Capabilities of inductively coupled plasma mass spectrometry for the detection of nanoparticles carried by monodisperse microdroplets. J Anal At Spectrom. 2011;26(6):1166–7411.CrossRefGoogle Scholar
  37. 37.
    Borovinskaya O, Gschwind S, Hattendorf B, Tanner M, Günther D. Simultaneous mass quantification of nanoparticles of different composition in a mixture by microdroplet generator-ICPTOFMS. Anal Chem. 2014;86(16):8142–48. doi: 10.1021/ac501150c.
  38. 38.
    Montoro Bustos AR, Petersen EJ, Possolo A, Winchester MR. Post hoc interlaboratory comparison of single particle ICP-MS size measurements of NIST gold nanoparticle reference materials. Anal Chem. 2015;87(17):8809–17.CrossRefGoogle Scholar
  39. 39.
    Pace HE, Rogers NJ, Jarolimek C, Coleman VA, Higgins CP, Ranville JF. Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry. Anal Chem. 2011;83(24):9361–9.CrossRefGoogle Scholar
  40. 40.
    Willis JB. Atomization problems in atomic absorption spectroscopy—I. A study of the operation of a typical nebulizer, spray chamber, and burner system. Spectrochim Acta, Part A. 1967;23(4):811–30.CrossRefGoogle Scholar
  41. 41.
    Smith DD, Browner RF. Measurement of aerosol transport efficiency in atomic spectrometry. Anal Chem. 1982;54(3):533–7.CrossRefGoogle Scholar
  42. 42.
    Tuoriniemi J, Cornelis G, Hassellov M. Improving the accuracy of single particle ICPMS for measurement of size distributions and number concentrations of nanoparticles by determining analyte partitioning during nebulisation. J Anal At Spectrom. 2014;29(4):743–52.CrossRefGoogle Scholar
  43. 43.
    Verwey EJW, Overbeek JTG, Overbeek JTG. Theory of the stability of lyophobic colloids. Courier Corporation 1999.Google Scholar
  44. 44.
    Derjaguin B, Landau L. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Prog Surf Sci. 1993;43(1/4):30–59.CrossRefGoogle Scholar
  45. 45.
    Falabella JB, Cho TJ, Ripple DC, Hackley VA, Tarlov MJ. Characterization of gold nanoparticles modified with single-stranded DNA using analytical ultracentrifugation and dynamic light scattering. Langmuir. 2010;26(15):12740–7.CrossRefGoogle Scholar
  46. 46.
    Reed RB, Goodwin DG, Marsh KL, Capracotta SS, Higgins CP, Fairbrother DH, et al. Detection of single walled carbon nanotubes by monitoring embedded metals. Environ Sci. 2013;15(1):204–13.Google Scholar
  47. 47.
    Pace HE, Rogers NJ, Jarolimek C, Coleman VA, Gray EP, Higgins CP, et al. Single particle inductively coupled plasma-mass spectrometry: a performance evaluation and method comparison in the determination of nanoparticle size. Environ Sci Technol. 2012;46(22):12272–80. doi: 10.1021/es301787d.
  48. 48.
    Mitrano DM, Lesher EK, Bednar A, Monserud J, Higgins CP, Ranville JF. Detecting nanoparticulate silver using single-particle inductively coupled plasma-mass spectrometry. Environ Toxicol Chem. 2012;31(1):115–21.CrossRefGoogle Scholar
  49. 49.
    Hineman A, Stephan C. Effect of dwell time on single particle inductively coupled plasma mass spectrometry data acquisition quality. J Anal At Spectrom. 2014;29:1252–57. doi: 10.1039/C4JA00097H.
  50. 50.
    Montaño MD, Badiei HR, Bazargan S, Ranville JF. Improvements in the detection and characterization of engineered nanoparticles using spICP-MS with microsecond dwell times. Environ Sci Nano. 2014;1:338–46. doi: 10.1039/C4EN00058G.
  51. 51.
    Tuoriniemi J, Cornelis G, Hassellöv M. A new peak recognition algorithm for detection of ultra-small nano-particles by single particle ICP-MS using rapid time resolved data acquisition on a sector-field mass spectrometer. J Anal At Spectrom. 2015;30(8):1723–9.CrossRefGoogle Scholar
  52. 52.
    Liu J, Murphy KE, MacCuspie RI, Winchester MR. Capabilities of single particle inductively coupled plasma mass spectrometry for the size measurement of nanoparticles: a case study on gold nanoparticles. Anal Chem. 2014;86(7):3405–14. doi: 10.1021/ac403775a.
  53. 53.
    Hadioui M, Peyrot C, Wilkinson KJ. Improvements to Single Particle ICPMS by the online coupling of ion exchange resins. Anal Chem. 2014;86(10):4668–74. doi: 10.1021/ac5004932.
  54. 54.
    Montoro Bustos A, Purushotham K, Vladár A, Murphy K, Winchester M Matrix effects and validation of single particle ICP-MS for measuring nanoparticle size and size distribution. Proceedings of the Winter Conference on Plasma Spectrochemistry; Tucson, AZ. 2016.Google Scholar
  55. 55.
    El Hadri H, Petersen EJ, Winchester MR. Impact of and correction for instrument sensitivity drift on nanoparticle size measurements by single-particle ICP-MS. Anal Bioanal Chem 2016; 1–10.Google Scholar
  56. 56.
    Cornelis G, Rauch S Drift correction of the dissolved signal in single particle ICPMS. Anal Bioanal Chem. 2016; 1–13Google Scholar
  57. 57.
    Cornelis G, Hassellöv M. A signal deconvolution method to discriminate smaller nanoparticles in single particle ICP-MS. J Anal At Spectrom. 2014;29(1):134–44.CrossRefGoogle Scholar
  58. 58.
    Scanlan LD, Reed RB, Loguinov AV, Antczak P, Tagmount A, Aloni S. Silver nanowire exposure results in internalization and toxicity to Daphnia manga. ACS Nano. 2013;7(12):10681–94. doi: 10.1021/nn4034103.
  59. 59.
    Masalov V, Sukhinina N, Kudrenko E, Emelchenko G. Mechanism of formation and nanostructure of Stöber silica particles. Nanotechnology. 2011;22(27):275718.CrossRefGoogle Scholar
  60. 60.
    Rahman IA, Vejayakumaran P, Sipaut CS, Ismail J, Chee CK. Size-dependent physicochemical and optical properties of silica nanoparticles. Mat Chem Phys. 2009;114(1):328–32.CrossRefGoogle Scholar
  61. 61.
    Houk R. Mass spectrometry of inductively coupled plasmas. Anal Chem. 1986;58(1):97A–105A.CrossRefGoogle Scholar
  62. 62.
    Houk RS, Fassel VA, Flesch GD, Svec HJ, Gray AL, Taylor CE. Inductively coupled argon plasma as an ion source for mass spectrometric determination of trace elements. Anal Chem. 1980;52(14):2283–9.CrossRefGoogle Scholar
  63. 63.
    Date AR, Gray AL. Development progress in plasma source mass spectrometry. Analyst (Cambridge, U K). 1983;108(1283):159–65.CrossRefGoogle Scholar
  64. 64.
    Hieftje GM, Vickers GH. Developments in plasma source/mass spectrometry. Anal Chim Acta. 1989;216:1–24.CrossRefGoogle Scholar
  65. 65.
    Nelms SM, editor. Inductively Coupled Plasma Mass Spectrometry Handbook. Oxford: Blackwell Publishing Ltd.; 2005.Google Scholar
  66. 66.
    Olesik JW. Investigating the fate of individual sample droplets in inductively coupled plasmas. Appl Spectrosc. 1997;51(5):158A.CrossRefGoogle Scholar
  67. 67.
    Olesik JW, Bates LC. Characterization of aerosols produced by pneumatic nebulizers for inductively coupled plasma sample introduction: effect of liquid and gas flow rates on volume based drop size distributions. Spectrochim Acta, Part B. 1995;50(4/7):285–303.CrossRefGoogle Scholar
  68. 68.
    Olesik JW, Stewart II, Hartshorne JA, Hensman CE. Sensitivity and matrix effects in ICP-MS: aerosol processing, ion production and ion transport. In: Tanner SD, Holland G, editors. Plasma source mass spectrometry: new developments and applications, pp 1–19. Cambridge: Royal Society of Chemistry; 1999.Google Scholar
  69. 69.
    Olesik JW Inductively Coupled Plasma Mass Spectrometers. In: Holland H, Turekian KK, (Eds) Treatise on Geochemistry, 2nd ed. Elsevier; 2014. pp 309–336.Google Scholar
  70. 70.
    Todolí JL, Mermet JM. Sample introduction systems for the analysis of liquid microsamples by ICP-AES and ICP-MS. Spectrochim Acta, Part B. 2006;61(3):239–83.CrossRefGoogle Scholar
  71. 71.
    Olesik JW, Hensman C, Rabb S, Rago D. Sample introduction, plasma-sample interactions, ion transport, and ion–molecule reactions: fundamental understanding and practical improvements in ICP-MS. In: Tanner SD, Holland G, (Eds) Plasma source mass spectrometry: the new millenium, pp. 3–17; Royal Society of Chemistry: Cambridge; 2001.Google Scholar
  72. 72.
    S-i M, Groombridge AS, S-i F, Minoda A, Takatsu A, Hioki A, et al. Highly efficient single-cell analysis of microbial cells by time-resolved inductively coupled plasma mass spectrometry. J Anal At Spectrom. 2014;29(9):1598–606.CrossRefGoogle Scholar
  73. 73.
    Gschwind S, Hagendorfer H, Frick DA, Günther D. Mass quantification of nanoparticles by single droplet calibration using inductively coupled plasma mass spectrometry. Anal Chem. 2013;85(12):5875–83.CrossRefGoogle Scholar
  74. 74.
    Borovinskaya O, Hattendorf B, Tanner M, Gschwind S, Günther D. A prototype of a new inductively coupled plasma time-of-flight mass spectrometer providing temporally resolved, multi-element detection of short signals generated by single particles and droplets. J Anal At Spectrom. 2013;28(2):226–33.CrossRefGoogle Scholar
  75. 75.
    Koch J, Flamigni L, Gschwind S, Allner S, Longerich H, Gunther D. Accelerated evaporation of microdroplets at ambient conditions for the on-line analysis of nanoparticles by inductively-coupled plasma mass spectrometry. J Anal At Spectrom. 2013;28(11):1707–17.CrossRefGoogle Scholar
  76. 76.
    Verboket PE, Borovinskaya O, Meyer N, Günther D, Dittrich PS. A new microfluidics-based droplet dispenser for ICPMS. Anal Chem. 2014;86(12):6012–8.CrossRefGoogle Scholar
  77. 77.
    Orlandini V, Niessen JO, Schaper JN, Petersen JH, Bings NH. Development and characterization of a thermal inkjet-based aerosol generator for micro-volume sample introduction in analytical atomic spectrometry. J Anal At Spectrom. 2011;26(9):1781–9.CrossRefGoogle Scholar
  78. 78.
    Dettman JR. Experimental measurements and modeling to understand sensitivity and plasma sample loading in inductively coupled plasma optical emission spectrometry. Thesis. The Ohio State University 2011.Google Scholar
  79. 79.
    Hobbs SE, Olesik JW. Inductively coupled plasma mass spectrometry signal fluctuations due to individual aerosol droplets and vaporizing particles. Anal Chem. 1992;64(3):274–83.CrossRefGoogle Scholar
  80. 80.
    Groh S, Garcia CC, Murtazin A, Horvatic V, Niemax K. Local effects of atomizing analyte droplets on the plasma parameters of the inductively coupled plasma. Spectrochim Acta, Part B. 2009;64(3):247–54.CrossRefGoogle Scholar
  81. 81.
    Ho K-S, Lee W-W, Chan W-T. Effects of ionization potential of an element and boiling point of the corresponding oxide on the sensitivity of ICP-MS. J Anal At Spectrom. 2015;30:2066–73.CrossRefGoogle Scholar
  82. 82.
    Ho KS, Lui KO, Lee KH, Chan WT. Considerations of particle vaporization and analyte diffusion in single-particle inductively coupled plasma-mass spectrometry. Spectrochim Acta, Part B. 2013;89:30–9.CrossRefGoogle Scholar
  83. 83.
    Olesik JW, Dziewatkoski MP. Time-resolved measurements of individual ion cloud signals to investigate space-charge effects in plasma mass spectrometry. J Am Soc Mass Spectrom. 1996;7(4):362–7.CrossRefGoogle Scholar
  84. 84.
    Olesik JW, Kinzer JA, McGowan GJ. Observation of atom and ion clouds produced from single droplets of sample in inductively coupled plasmas by optical emission and laser-induced fluorescence imaging. Appl Spectrosc. 1997;51(5):607–16.CrossRefGoogle Scholar
  85. 85.
    Dziewatkoski MP, Daniels LB, Olesik JW. Time-resolved inductively coupled plasma mass spectrometry measurements with individual, monodisperse drop sample introduction. Anal Chem. 1996;68(7):1101–9.CrossRefGoogle Scholar
  86. 86.
    Lindner H, Murtazin A, Groh S, Niemax K, Bogaerts A. Simulation and experimental studies on plasma temperature, flow velocity, and injector diameter effects for an inductively coupled plasma. Anal Chem. 2011;83(24):9260–6.CrossRefGoogle Scholar
  87. 87.
    Aghaei M, Bogaerts A. Particle transport through an inductively coupled plasma torch: elemental droplet evaporation. J Anal At Spectrom. 2016;31:631–641. doi: 10.1039/C5JA00162E.
  88. 88.
    Aghaei M, Flamigni L, Lindner H, Günther D, Bogaerts A. Occurrence of gas flow rotational motion inside the ICP torch: a computational and experimental study. J Anal At Spectrom. 2014;29(2):249–61.CrossRefGoogle Scholar
  89. 89.
    Borovinskaya O, Aghaei M, Flamigni L, Hattendorf B, Tanner M, Bogaerts A, et al. Diffusion-and velocity-driven spatial separation of analytes from single droplets entering an ICP off-axis. J Anal At Spectrom. 2014;29(2):262–71.CrossRefGoogle Scholar
  90. 90.
    Montaño MD Studies into the detection, characterization, and behavior of naturally occurring and engineered inorganic nanoparticles. Thesis. The Colorado School of Mines 2014.Google Scholar
  91. 91.
    Peters R, Herrera-Rivera Z, Undas A, van der Lee M, Marvin H, Bouwmeester H, et al. Single particle ICP-MS combined with a data evaluation tool as a routine technique for the analysis of nanoparticles in complex matrices. J Anal At Spectrom. 2015;30(6):1274–85.CrossRefGoogle Scholar
  92. 92.
    Lee S, Bi X, Reed RB, Ranville JF, Herckes P, Westerhoff P. Nanoparticle size detection limits by single particle ICP-MS for 40 elements. Environ Sci Technol. 2014;48(17):10291–300.CrossRefGoogle Scholar
  93. 93.
    Stephan C Analysis of iron nanoparticles in organic solvents used in the semiconductor industry using single particle ICP-MS in reaction mode 2015. Report no.: Perkin Elmer Application Note 012407A_01. 2015.Google Scholar
  94. 94.
    Stewart II, Hensman CE, Olesik JW. Influence of gas sampling on analyte transport within the ICP and ion sampling for ICP-MS studied using individual, isolated sample droplets. Appl Spectrosc. 2000;54(2):164–74.CrossRefGoogle Scholar
  95. 95.
    Douglas DJ, French JB. Gas dynamics of the inductively coupled plasma mass spectrometry interface. J Anal At Spectrom. 1988;3(6):743–7.CrossRefGoogle Scholar
  96. 96.
    Olivares JA, Houk RS. Ion sampling for inductively coupled plasma mass spectrometry. Anal Chem. 1985;57(13):2674–9.CrossRefGoogle Scholar
  97. 97.
    Tanner SD. Space charge in ICP-MS: calculation and implications. Spectrochi Acta Part B. 1992;47(6):809–23.CrossRefGoogle Scholar
  98. 98.
    Tan SH, Horlick G. Matrix-effect observations in inductively coupled plasma mass spectrometry. J Anal At Spectrom. 1987;2(8):745–63.CrossRefGoogle Scholar
  99. 99.
    Strenge I, Engelhard C. Capabilities of fast data acquisition with microsecond time resolution in inductively coupled plasma mass spectrometry and identification of signal artifacts from millisecond dwell times during detection of single gold nanoparticles. J Anal At Spectrom. 2016;31(1):135–44.CrossRefGoogle Scholar
  100. 100.
    Miyashita S, Fujii S, Takatsu A, Inagaki K Evaluation of transport efficiency of nanoparticles through a total consumption sample introduction system in single particle ICP-MS. Proceedings of the Winter Conference on Plasma Spectrochemistry; Tucson, AZ 2016.Google Scholar
  101. 101.
    Yau MHP, Chan W-T. A novel detection scheme of trace elements using ICP-MS. J Anal At Spectrom. 2005;20(11):1197–202.CrossRefGoogle Scholar
  102. 102.
    Stephan C, Hineman A. Analysis of NIST gold nanoparticles reference materials using the NexION 300 ICP-MS in single particle mode. Application Note, Perkin Elmer, Inc. 2012.Google Scholar
  103. 103.
    Hadioui M, Wilkinson K, Stephan C. Assessing the fate of silver nanoparticles in surface water using single particle ICP-MS. A Perkin Elmer Application note.Google Scholar
  104. 104.
    Sannac S. Single particle analysis of nanomaterials using the Agilent 7900 ICP-MS. An Agilent Application Note.Google Scholar
  105. 105.
    Kutscher D, Wills J, McSheehy Ducos S. Nanoparticle characterization via single particle inductively coupled plasma-mass spectrometry (spICP-MS) using a dedicated plug-in for Qtegra ISDS software. ThermoScientific Technical Note.43279.Google Scholar
  106. 106.
    Loeschner K, Navratilova J, Købler C, Mølhave K, Wagner S, Kammer F, et al. Detection and characterization of silver nanoparticles in chicken meat by asymmetric flow field flow fractionation with detection by conventional or single particle ICP-MS. Anal Bioanal Chem. 2013;405(25):8185–95.CrossRefGoogle Scholar
  107. 107.
    Loeschner K, Harrington CF, Kearney J-L, Langton DJ, Larsen EH. Feasibility of asymmetric flow field-flow fractionation coupled to ICP-MS for the characterization of wear metal particles and metalloproteins in biofluids from hip replacement patients. Anal Bioanal Chem. 2015;407(16):4541–54.CrossRefGoogle Scholar
  108. 108.
    Kim ST, Kim HK, Han SH, Jung EC, Lee S. Determination of size distribution of colloidal TiO 2 nanoparticles using sedimentation field-flow fractionation combined with single particle mode of inductively coupled plasma-mass spectrometry. Microchem J. 2013;110:636–42.CrossRefGoogle Scholar
  109. 109.
    Roman M, Rigo C, Castillo-Michel H, Munivrana I, Vindigni V, Mičetić I. Hydrodynamic chromatography coupled to single-particle ICP-MS for the simultaneous characterization of AgNPs and determination of dissolved Ag in plasma and blood of burn patients. Anal Bioanal Chem 1–16 2015.Google Scholar
  110. 110.
    Proulx K, Wilkinson KJ. Separation, detection, and characterisation of engineered nanoparticles in natural waters using hydrodynamic chromatography and multi-method detection (light scattering, analytical ultracentrifugation, and single particle ICP-MS). Environ Chem. 2014;11(4):392–401.CrossRefGoogle Scholar
  111. 111.
    Hadioui M, Merdzan V, Wilkinson KJ. Detection and characterization of ZnO nanoparticles in surface and waste waters using single particle ICPMS. Environ Sci Technol. 2015;49(10):6141–8.CrossRefGoogle Scholar
  112. 112.
    Mitrano D, Ranville J, Bednar A, Kazor K, Hering A, Higgins C. Tracking dissolution of silver nanoparticles at environmentally relevant concentrations in laboratory, natural, and processed waters using single particle ICP-MS (spICP-MS). Environ Sci: Nano. 2014;1(3):248–59.Google Scholar
  113. 113.
    Reed RB, Higgins CP, Westerhoff P, Tadjiki S, Ranville JF. Overcoming challenges in analysis of polydisperse metal-containing nanoparticles by single particle inductively coupled plasma mass spectrometry. J Anal At Spectrom. 2012;27(7):1093–100.CrossRefGoogle Scholar
  114. 114.
    Tuoriniemi J, Cornelis G, Hassellöv M. Size discrimination and detection capabilities of single-particle ICPMS for environmental analysis of silver nanoparticles. Anal Chem. 2012;84(9):3965–72.CrossRefGoogle Scholar
  115. 115.
    Gondikas AP, Fvd K, Reed RB, Wagner S, Ranville JF, Hofmann T. Release of TiO2 nanoparticles from sunscreens into surface waters: a one-year survey at the old Danube recreational lake. Environ Sci Technol. 2014;48(10):5415–22.CrossRefGoogle Scholar
  116. 116.
    Roco MC, Mirkin CA, Hersam MC. Nanotechnology research directions for societal needs in 2020: summary of international study. J Nanoparticle Res. 2011;13(3):897–919.CrossRefGoogle Scholar
  117. 117.
    Roco MC, Mirkin CA, Hersam MC Nanotechnology research directions for societal needs in 2020: Retrospective and outlook. Springer 2011.Google Scholar
  118. 118.
    Kiser MA, Westerhoff P, Benn T, Wang Y, Pérez-Rivera J, Hristovski K. Titanium nanomaterial removal and release from wastewater treatment plants. Environ Sci Technol. 2009;43(17):6757–63.CrossRefGoogle Scholar
  119. 119.
    Speed D, Westerhoff P, Sierra-Alvarez R, Draper R, Pantano P, Aravamudhan S, et al. Physical, chemical, and in vitro toxicological characterization of nanoparticles in chemical mechanical planarization suspensions used in the semiconductor industry: towards environmental health and safety assessments. Environ Sci: Nano. 2015;2(3):227–44.Google Scholar
  120. 120.
    Christian P, Kammer F, Baalousha M, Hofmann T. Nanoparticles: structure, properties, preparation and behavior in environmental media. Ecotoxicology. 2008;17(5):326–43.CrossRefGoogle Scholar
  121. 121.
    Kah M, Hofmann T. Nanopesticide research: current trends and future priorities. Environ Int. 2014;63:224–35.CrossRefGoogle Scholar
  122. 122.
    Benn T, Cavanagh B, Hristovski K, Posner JD, Westerhoff P. The Release of Nanosilver from Consumer Products Used in the Home Supplemental data file available online for this article. [All rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher.]. J Environ Qual. 2010;39(6):1875–82.CrossRefGoogle Scholar
  123. 123.
    Benn TM, Westerhoff P. Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol. 2008;42(11):4133–239.CrossRefGoogle Scholar
  124. 124.
    Donovan AR, Adams CD, Ma Y, Stephan C, Eichholz T, Shi H. Single particle ICP-MS characterization of titanium dioxide, silver, and gold nanoparticles during drinking water treatment. Chemosphere. 2016;144:148–53.CrossRefGoogle Scholar
  125. 125.
    Farkas J, Peter H, Christian P, Gallego Urrea JA, Hassellöv M, Tuoriniemi J, et al. Characterization of the effluent from a nanosilver producing washing machine. Environ Int. 2011;37(6):1057–62.CrossRefGoogle Scholar
  126. 126.
    Peters RJ, Rivera ZH, van Bemmel G, Marvin HJ, Weigel S, Bouwmeester H. Development and validation of single particle ICP-MS for sizing and quantitative determination of nano-silver in chicken meat. Anal Bioanal Chem. 2014;406(16):3875–85.Google Scholar
  127. 127.
    Linsinger TP, Peters R, Weigel S. International interlaboratory study for sizing and quantification of Ag nanoparticles in food simulants by single-particle ICPMS. Anal Bioanal Chem. 2014;406(16):3835–43.CrossRefGoogle Scholar
  128. 128.
    Ramos K, Gómez-Gómez MM, Cámara C, Ramos L. Silver speciation and characterization of nanoparticles released from plastic food containers by single particle ICPMS. Talanta. 2016;151:83–90. doi: 10.1016/j.talanta.2015.12.071.
  129. 129.
    Verleysen E, Van Doren E, Waegeneers N, De Temmerman P-J, Abi Daoud Francisco M, Mast J. TEM and SP-ICP-MS analysis of the release of silver nanoparticles from decoration of pastry. J Agri Food Chem. 2015;63(13):3570–8.CrossRefGoogle Scholar
  130. 130.
    Szakal C, Roberts SM, Westerhoff P, Bartholomaeus A, Buck N, Illuminato I, et al. Measurement of nanomaterials in foods: integrative consideration of challenges and future prospects. ACS Nano. 2014;8(4):3128–35.CrossRefGoogle Scholar
  131. 131.
    Singh G, Stephan C, Westerhoff P, Carlander D, Duncan TV. Measurement methods to detect, characterize, and quantify engineered nanomaterials in foods. Comprehens Rev Food Sci Food Safety. 2014;13(4):693–704.CrossRefGoogle Scholar
  132. 132.
    António D, Cascio C, Jakšić Ž, Jurašin D, Lyons D, Nogueira A. Assessing silver nanoparticles behavior in artificial seawater by mean of AF4 and spICP-MS. Marine Environ Res; 2015.Google Scholar
  133. 133.
    Furtado L, Hoque M, Mitrano D, Ranville J, Cheever B, Frost P. The persistence and transformation of silver nanoparticles in littoral lake mesocosms monitored using various analytical techniques. Environ Chem; 2014.Google Scholar
  134. 134.
    Mitrano DM, Arroyo Rojas Dasilva Y, Nowack B. Effect of variations of washing solution chemistry on nanomaterial physicochemical changes in the laundry cycle. Environ Sci Technol. 2015;49(16):9665–73.CrossRefGoogle Scholar
  135. 135.
    Coleman JG, Kennedy AJ, Bednar AJ, Ranville JF, Laird JG, Harmon AR, et al. Comparing the effects of nanosilver size and coating variations on bioavailability, internalization, and elimination, using Lumbriculus variegatus. Environ Toxicol Chem. 2013;32(9):2069–77.CrossRefGoogle Scholar
  136. 136.
    Gray EP, Coleman JG, Bednar AJ, Kennedy AJ, Ranville JF, Higgins CP. Extraction and analysis of silver and gold nanoparticles from biological tissues using single particle inductively coupled plasma mass spectrometry. Environ Sci Technol;2013.Google Scholar
  137. 137.
    Dan Y, Zhang W, Xue R, Ma X, Stephan C, Shi H. Characterization of gold nanoparticle uptake by tomato plants using enzymatic extraction followed by single-particle inductively coupled plasma-mass spectrometry analysis. Environ Sci Technol. 2015;49(5):3007–14.CrossRefGoogle Scholar
  138. 138.
    Hu S, Liu R, Zhang S, Huang Z, Xing Z, Zhang X. A new strategy for highly sensitive immunoassay based on single-particle mode detection by inductively coupled plasma mass spectrometry. J Am Soc Mass Spectrom. 2009;20(6):1096–103.CrossRefGoogle Scholar
  139. 139.
    Han G, Xing Z, Dong Y, Zhang S, Zhang X. One‐step homogeneous DNA assay with single‐nanoparticle detection. Angew Chem Int Ed. 2011;50(15):3462–5.CrossRefGoogle Scholar
  140. 140.
    Zhang S, Han G, Xing Z, Zhang S, Zhang X. Multiplex DNA assay based on nanoparticle probes by single particle inductively coupled plasma mass spectrometry. Anal Chem. 2014;86(7):3541–7.CrossRefGoogle Scholar
  141. 141.
    Nowack B, Bornhöft N, Ding Y, Riediker M, Jiménez AS, Sun T. The flows of engineered nanomaterials from production, use, and disposal to the environment. The Handbook of Environmental Chemistry. 2015;48:209–31.Google Scholar
  142. 142.
    Tanner SD, Baranov VI, Bandura DR. Reaction cells and collision cells for ICP-MS: a tutorial review. Spectrochim Acta, Part B. 2002;57(9):1361–452.CrossRefGoogle Scholar
  143. 143.
    Lesher EK, Ranville JF, Honeyman BD. Analysis of pH dependent uranium(VI) sorption to nanoparticulate hematite by flow field-flow fractionation-inductively coupled plasma mass spectrometry. Environ Sci Technol. 2009;43(14):5403–9.CrossRefGoogle Scholar
  144. 144.
    Montano MD, Majestic BJ, Jamting AK, Westerhoff P, Ranville JF. Methods for the detection and characterization of silica colloids by microsecond spICP-MS. Anal Chem. 2016;88(9):4733–41.Google Scholar
  145. 145.
    Zheng J. Evaluation of a new sector-field ICP-MS with Jet Interface for ultra-trace determination of Pu isotopes: from femtogram to attogram levels. J Nucl Radiochem Sci. 2015;15(1):7–13.Google Scholar
  146. 146.
    Yongyang S, Wei W, Zhiming L, Hu D, Guoqing Z, Jiang X, et al. Direct detection and isotope analysis of individual particles in suspension by single particle mode MC-ICP-MS for nuclear safety. J Anal At Spectrom. 2015;30(5):1184–90.CrossRefGoogle Scholar
  147. 147.
    Navratilova J, Praetorius A, Gondikas A, Fabienke W, von der Kammer F, Hofmann T. Detection of engineered copper nanoparticles in soil using single particle ICP-MS. Int J Environ Res Public Health. 2015;12(12):15756–68.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Manuel D. Montaño
    • 1
    Email author
  • John W. Olesik
    • 2
  • Angela G. Barber
    • 3
  • Katie Challis
    • 3
  • James F. Ranville
    • 3
  1. 1.Department of Civil and Environmental EngineeringDuke University, Center for Environmental Implications of NanotechnologyDurhamUSA
  2. 2.School of Earth SciencesOhio State UniversityColumbusUSA
  3. 3.Department of Chemistry and GeochemistryColorado School of MinesGoldenUSA

Personalised recommendations