Advertisement

Analytical and Bioanalytical Chemistry

, Volume 408, Issue 20, pp 5527–5535 | Cite as

Experimental and computational studies on molecularly imprinted solid-phase extraction for gonyautoxins 2,3 from dinoflagellate Alexandrium minutum

  • Ziru Lian
  • Hai-Bei LiEmail author
  • Jiangtao WangEmail author
Research Paper

Abstract

An innovative and effective extraction procedure based on molecularly imprinted solid-phase extraction (MISPE) was developed for the isolation of gonyautoxins 2,3 (GTX2,3) from Alexandrium minutum sample. Molecularly imprinted polymer microspheres were prepared by suspension polymerization and and were employed as sorbents for the solid-phase extraction of GTX2,3. An off-line MISPE protocol was optimized. Subsequently, the extract samples from A. minutum were analyzed. The results showed that the interference matrices in the extract were obviously cleaned up by MISPE procedures. This outcome enabled the direct extraction of GTX2,3 in A. minutum samples with extraction efficiency as high as 83 %, rather significantly, without any need for a cleanup step prior to the extraction. Furthermore, computational approach also provided direct evidences of the high selective isolation of GTX2,3 from the microalgal extracts.

Keywords

Gonyautoxins 2,3 Molecularly imprinted solid-phase extraction Alexandrium minutum Computational approach 

Notes

Acknowledgments

This project was supported by the National Natural Science Foundation of China (No.41506092), the Public Science and Technology Research Funds Projects of Ocean (No. 201505034), the Natural Science Foundation of Shandong Province of China (No. ZR2014BQ015), and the China Postdoctoral Science Foundation (No. 2014M551892).

Compliance with ethical standard

Conflict of interest

The authors declared that they have no conflict of interest.

Supplementary material

216_2016_9644_MOESM1_ESM.pdf (86 kb)
ESM. 1 (PDF 86.3 kb)

References

  1. 1.
    Hakanen P, Suikkanen S, Franzén J, Franzén H, Kankaanpää H, Kremp A. Bloom and toxin dynamics of Alexandrium ostenfeldii in a shallow embayment at the SW coast of Finland, northern Baltic Sea. Harmful Algae. 2012;15:91–9.CrossRefGoogle Scholar
  2. 2.
    Roje-Busatto R, Ujevic I. PSP toxins profile in ascidian Microcosmus vulgaris (Heller, 1877) after human poisoning in Croatia (Adriatic Sea). Toxicon. 2014;79:28–36.CrossRefGoogle Scholar
  3. 3.
    Cosgrove S, NiRathaille A, Raine R. The influence of bloom intensity on the encystment rate and persistence of Alexandrium minutum in Cork Harbor Ireland. Harmful Algae. 2014;31:114–24.CrossRefGoogle Scholar
  4. 4.
    Diercks S, Medlin LK, Metfies K. Colorimetric detection of the toxic dinoflagellate Alexandrium minutum using sandwich hybridization in a microtiter plate assay. Harmful Algae. 2008;7:137–45.CrossRefGoogle Scholar
  5. 5.
    Cestele S, Catterall WA. Molecular mechanisms of neurotoxin action on voltage-gated sodium channels. Biochimie. 2000;82:883–92.CrossRefGoogle Scholar
  6. 6.
    Fonfria ES, Vilarino N, Campbell K, Elliott C, Haughey SA, Ben-Gigirey B, et al. Paralytic shellfish poisoning detection by surface plasmon resonance-based biosensors in shellfish matrixes. Anal Chem. 2007;79:6303–11.CrossRefGoogle Scholar
  7. 7.
    Chen J, Gao L, Li Z, Wang S, Li J, Cao W, et al. Simultaneous screening for lipophilic and hydrophilic toxins in marine harmful algae using a serially coupled reversed-phase and hydrophilic interaction liquid chromatography separation system with high-resolution mass spectrometry. Anal Chim Acta. 2016;914:117–26.CrossRefGoogle Scholar
  8. 8.
    Humpage A, Magalhaes V, Froscio S. Comparison of analytical tools and biological assays for detection of paralytic shellfish poisoning toxins. Anal Bioanal Chem. 2010;397:1655–71.CrossRefGoogle Scholar
  9. 9.
    Anon. AOAC International. 2005; AOAC Official Method 2005.06Google Scholar
  10. 10.
    Anon. AOAC International. 2011; AOAC Official Method 2011.02Google Scholar
  11. 11.
    Anon. AOAC International. 2011; AOAC Official Method 2011.27Google Scholar
  12. 12.
    Turner DA, Hatfield CR. Refinement of AOAC Official Method SM 2005.06 Liquid chromatography-fluorescence detection method to improve performance characteristics for the determination of paralytic shellfish toxins in king and queen scallops. J AOAC Int. 2012;95:129–42.CrossRefGoogle Scholar
  13. 13.
    Turner DA, Hatfield CR, Rapkova M, Higman W, Algoet M, Suarez-Isla BA, et al. Comparison of AOAC 2005.06 LC official method with other methodologies for the quantitation of paralytic shellfish poisoning toxins in UK shellfish species. Anal Bioanal Chem. 2011;399:1257–70.CrossRefGoogle Scholar
  14. 14.
    Riet van de J, Gibbs SR, Muggah MP, Rourke WA, MacNeil DJ, Quilliam AM. Liquid chromatography post-column oxidation (PCOX) method for the determination of paralytic shellfish toxins in mussels, clams, oysters, and scallops: collaborative study. J AOAC Int. 2011;94:1154–76.Google Scholar
  15. 15.
    Halme M, Rapinoja ML, Karjalainen M, Vanninen P. Verification and quantification of saxitoxin from algal samples using fast and validated hydrophilic interaction liquid chromatography-tandem mass spectrometry method. J Chromatogr B. 2012;880:50–7.CrossRefGoogle Scholar
  16. 16.
    Blay P, Hui PMJ, Chang J, Melanson EJ. Screening for multiple classes of marine biotoxins by liquid chromatography-high-resolution mass spectrometry. Anal Bioanal Chem. 2011;400:577–85.CrossRefGoogle Scholar
  17. 17.
    Sato S, Takata Y, Kondo S, Kotoda A, Hongo N. Quantitative ELISA kit for paralytic shellfish toxins coupled with sample pretreatment. J AOAC Int. 2014;97:339–44.CrossRefGoogle Scholar
  18. 18.
    Hara Y, Dong J, Ueda H. Open-sandwich immunoassay for sensitive and broad-rangedetection of a shellfish toxin gonyautoxin. Anal Chim Acta. 2013;793:107–13.CrossRefGoogle Scholar
  19. 19.
    Foss AJ, Phlips EJ, Aubel MT, Szabo NJ. Investigation of extraction and analysis techniques for Lyngbya wollei derived paralytic shellfish toxins. Toxicon. 2012;60:1148–58.CrossRefGoogle Scholar
  20. 20.
    AOAC. Paralytic Shellfish Poison. Biological Method. First Action 2005.06. Official Methods of Analysis of the AOAC. Method 2005. 49.10.03.Google Scholar
  21. 21.
    Lope C, Claude B, Morin P, Max JP, Pena R, Ribet JP. Synthesis and study of a molecularly imprinted polymer for the specific extraction of indole alkaloids from Catharanthus roseus extracts. Anal Chim Acta. 2011;683:198–205.CrossRefGoogle Scholar
  22. 22.
    Lian ZR, Liang ZL, Wang JT. Selective extraction and concentration of mebendazole in seawater samples using molecularly imprinted polymer as sorbent. Mar Pollut Bull. 2015;91:96–101.CrossRefGoogle Scholar
  23. 23.
    Doué M, Bichon E, Dervilly-Pinel G, Pichon V, Chapuis-Hugon F, Lesellier E, et al. Molecularly imprinted polymer applied to the selective isolation of urinary steroid hormones: an efficient tool in the control of natural steroid hormones abuse in cattle. J Chromatogr A. 2012;1270:51–61.CrossRefGoogle Scholar
  24. 24.
    Lian ZR, He XL, Wang JT. Determination of sulfadiazine in Jiaozhou Bay using molecularly imprinted solid-phase extraction followed by high-performance liquid chromatography with a diode-array detector. J Chromatogr B. 2014;957:53–9.CrossRefGoogle Scholar
  25. 25.
    Meier F, Schott B, Riedel D, Mizaikoff B. Computational and experimental study on the influence of the porogen on the selectivity of 4-nitrophenol molecularly imprinted polymers. Anal Chim Acta. 2012;744:68–74.CrossRefGoogle Scholar
  26. 26.
    Sobiech M, Zołek T, Luliński P, Maciejewska D. Separation of octopamine racemate on (R, S)-2-amino-1-phenylethanol imprinted polymer—experimental and computational studies. Talanta. 2016;146:556–67.Google Scholar
  27. 27.
    Ahmadi F, Yawari E, Nikbakht M. Computational design of an enantioselective molecular imprinted polymer for the solid phase extraction of S-warfarin from plasma. J Chromatogr A. 2014;1338:9–16.CrossRefGoogle Scholar
  28. 28.
    Azimi A, Javanbakht M. Computational prediction and experimental selectivity coefficients for hydroxyzine and cetirizine molecularly imprinted polymer based potentiometric sensors. Anal Chim Acta. 2014;812:184–90.CrossRefGoogle Scholar
  29. 29.
    Lawrence JF, Barbara N. Quantitative determination of paralytic shellfish poisoning toxins in shellfish by using prechromatographic oxidation and liquid chromatography with fluorescence detection. J AOAC Int. 2001;84:1099–108.Google Scholar
  30. 30.
    Aversano CD, Hess P, Quilliam MA. Hydrophilic interaction liquid chromatography-mass spectrometry for the analysis of paralytic shellfish poisoning (PSP) toxins. J Chromatogr A. 2005;1081:190–201.CrossRefGoogle Scholar
  31. 31.
    Lian ZR, Wang JT. Study of molecularly imprinted solid-phase extraction of gonyautoxins 2,3 in the cultured dinoflagellate Alexandrium tamarense by high-performance liquid chromatography with fluorescence detection. Environ Pollut. 2013;182:385–91.CrossRefGoogle Scholar
  32. 32.
    Maeda S, Ohno K, Morokuma K. Systematic exploration of the mechanism of chemical reactions: the global reaction route mapping (GRRM) strategy using the ADDF and AFIR methods. Phys Chem Chem Phys. 2013;15:3683–701.CrossRefGoogle Scholar
  33. 33.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, IzmayloAF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JJA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Taroverov VNS, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stra-tmann RE, Yazyev OA, Austin J, Cammi R, Pomelli C, Ochterski J W, Martin RL, MorokumaK, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich SA, Daniels D, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford, CT. 2009.Google Scholar
  34. 34.
    Cancès E, Mennucci B, Tomasi J. A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys. 1997;107:3032–41.CrossRefGoogle Scholar
  35. 35.
    Mennucci B, Tomasi J. Continuum solvation models: a new approach to the problem of solute’s charge distribution and cavity boundaries. J Chem Phys. 1997;106:5151–8.CrossRefGoogle Scholar
  36. 36.
    Mennucci B, Cancès E, Tomasi J. Evaluation of solvent effects in isotropic and anisotropic dielectrics and in ionic solutions with a unified integral equation method: theoretical bases, computational implementation, and numerical applications. J Phys Chem B. 1997;101:10506–17.CrossRefGoogle Scholar
  37. 37.
    Gerssen A, Mcelhinney MA, Mulder PPJ, Bire R, Hess P, Boer JD. Solid phase extraction for removal of matrix effects in lipophilic marine toxin analysis by liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2009;394:1213–26.CrossRefGoogle Scholar
  38. 38.
    Zhuo L, Yin Y, Fu W, Qiu B, Lin Z, Yang Y, et al. Determination of paralytic shellfish poisoning toxins by HILIC-MS/MS coupled with dispersive solid phase extraction. Food Chem. 2013;137:115–21.CrossRefGoogle Scholar
  39. 39.
    Boundy JM, Selwood IA, Harwood TD, McNabb SP, Turner DA. Development of a sensitive and selective liquid chromatography-mass spectrometry method for high throughput analysis of paralytic shellfish toxins using graphitised carbon solid phase extraction. J Chromatogr A. 2015;1387:1–12.CrossRefGoogle Scholar
  40. 40.
    Parr RG, Yang W. Density-functional theory of atoms and molecules. 1989; New York: Oxford University Press.Google Scholar
  41. 41.
    Fonseca CM, Nascimento JCS, Borges BK. Theoretical investigation on functional monomer and solvent selection for molecular imprinting of tramadol. Chem Phys Lett. 2016;645:174–9.CrossRefGoogle Scholar
  42. 42.
    Karimian N, Gholivand MB, Taherkhani F. Computational design and development of a novel voltammetric sensor for minoxidil detection based on electropolymerized molecularly imprinted polymer. J Electroanal Chem. 2015;740:45–52.CrossRefGoogle Scholar
  43. 43.
    Martins N, Carreiro EP, Locati A, Ramalho JPP, Cabrita MJ, Burke AJ, et al. Design and development of molecularly imprinted polymers for the selective extraction of deltamethrin in olive oil: an integrated computational-assisted approach. J Chromatogr A. 2015;1409:1–10.CrossRefGoogle Scholar
  44. 44.
    Nicholls IA, Andersson HS, Charlton C, Henschel H, Karlsson BCG, Karlsson JG, et al. Theoretical and computational strategies for rational molecularly imprinted polymer design. Biosens Bioelectron. 2009;25:543–52.CrossRefGoogle Scholar
  45. 45.
    Nezhadali A, Mojarrab M. Computational study and multivariate optimization of hydrochlorothiazide analysis using molecularly imprinted polymer electrochemical sensor based on carbon nanotube/polypyrrole film. Sensors Actuat B-Chem. 2014;190:829–37.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Marine CollegeShandong UniversityWeihaiChina
  2. 2.Key Laboratory of Marine Chemistry Theory and Technology, Ministry of EducationOcean University of ChinaQingdaoChina

Personalised recommendations