Analytical and Bioanalytical Chemistry

, Volume 408, Issue 20, pp 5407–5414 | Cite as

Ambient ionization mass spectrometric analysis of human surgical specimens to distinguish renal cell carcinoma from healthy renal tissue

  • Clint M. Alfaro
  • Alan K. Jarmusch
  • Valentina Pirro
  • Kevin S. Kerian
  • Timothy A. Masterson
  • Liang Cheng
  • R. Graham CooksEmail author
Rapid Communication


Touch spray-mass spectrometry (TS-MS) is an ambient ionization technique (ionization of unprocessed samples in the open air) that may find intraoperative applications in quickly identifying the disease state of cancerous tissues and in defining surgical margins. In this study, TS-MS was performed on fresh kidney tissue (∼1–5 cm3), within 1 h of resection, from 21 human subjects afflicted by renal cell carcinoma (RCC). The preliminary diagnostic value of TS-MS data taken from freshly resected tissue was evaluated. Principal component analysis (PCA) of the negative ion mode (m/z 700–1000) data provided the separation between RCC (16 samples) and healthy renal tissue (13 samples). Linear discriminant analysis (LDA) on the PCA-compressed data estimated sensitivity (true positive rate) and specificity (true negative rate) of 98 and 95 %, respectively, based on histopathological evaluation. The results indicate that TS-MS might provide rapid diagnostic information in spite of the complexity of unprocessed kidney tissue and the presence of interferences such as urine and blood. Desorption electrospray ionization-MS imaging (DESI-MSI) in the negative ionization mode was performed on the tissue specimens after TS-MS analysis as a reference method. The DESI imaging experiments provided phospholipid profiles (m/z 700–1000) that also separated RCC and healthy tissue in the PCA space, with PCA-LDA sensitivity and specificity of 100 and 89 %, respectively. The TS and DESI loading plots indicated that different ions contributed most to the separation of RCC from healthy renal tissue (m/z 794 [PC 34:1 + Cl] and 844 [PC 38:4 + Cl] for TS vs. m/z 788 [PS 36:1 − H] and 810 [PS 38:4 − H] for DESI), while m/z 885 ([PI 38:4 − H]) was important in both TS and DESI. The prospect, remaining hurdles, and future work required for translating TS-MS into a method of intraoperative tissue diagnosis are discussed.

Graphical abstract

Touch spray-mass spectrometry used for lipid profiling of fresh human renal cell carcinoma. Left) Photograph of the touch spray probe pointed at the MS inlet. Right) Average mass spectra of healthy renal tissue (blue) and RCC (red)


Touch spray ionization Desorption electrospray ionization Mass spectrometry Multivariate statistics Surgical tissue analysis Cancer 



The research reported in this publication was supported by the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health under award number R21EB015722. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. K. A. Kerian gratefully recognizes the funding support from the Purdue University Center for Cancer Research SIRG Graduate Research Assistantship Award that funded him for this study.

Compliance with ethical standards

The research involving human subjects was conducted in compliance with the ethical guidelines of the approved Institutional Review Board protocols at the Indiana University School of Medicine (study # 1205008669R004) and Purdue University (study # 1203011967). The renal cell carcinoma samples were obtained from 21 human subjects after they provided written informed consent to participate in the research study.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2016_9627_MOESM1_ESM.pdf (2.2 mb)
ESM 1 (PDF 2287 kb)


  1. 1.
    Howlader N, Noone A, Krapcho M, Garshell J, Miller D, Altekruse SF, et al. SEER cancer statistics review, 1975–2012. Bethesda: National Cancer Institute; 2015.Google Scholar
  2. 2.
    Chow WH, Dong LM, Devesa SS. Epidemiology and risk factors for kidney cancer. Nat Rev Urol. 2010;7(5):245–57.CrossRefGoogle Scholar
  3. 3.
    Lasseigne BN, Burwell TC, Patil MA, Absher DM, Brooks JD, Myers RM. DNA methylation profiling reveals novel diagnostic biomarkers in renal cell carcinoma. BMC Med. 2014;12:235.CrossRefGoogle Scholar
  4. 4.
    Liao L, Testa JR, Yang H. The roles of chromatin-remodelers and epigenetic modifiers in kidney cancer. Cancer Genet. 2015;208(5):206–14.CrossRefGoogle Scholar
  5. 5.
    Durinck S, Stawiski EW, Pavia-Jimenez A, Modrusan Z, Kapur P, Jaiswal BS, et al. Spectrum of diverse genomic alterations define non-clear cell renal carcinoma subtypes. Nat Genet. 2014;47(1):13–21.CrossRefGoogle Scholar
  6. 6.
    Masui O, White NM, DeSouza LV, Krakovska O, Matta A, Metias S, et al. Quantitative proteomic analysis in metastatic renal cell carcinoma reveals a unique set of proteins with potential prognostic significance. Mol Cell Proteomics. 2012;12(1):132–44.CrossRefGoogle Scholar
  7. 7.
    Morgan TM, Seeley EH, Fadare O, Caprioli RM, Clark PE. Imaging the clear cell renal cell carcinoma proteome. J Urol. 2012;189(3):1097–103.CrossRefGoogle Scholar
  8. 8.
    Guo T, Kouvonen P, Koh CC, Gillet LC, Wolski WE, Rost HL, et al. Rapid mass spectrometric conversion of tissue biopsy samples into permanent quantitative digital proteome maps. Nat Med. 2015;21(4):407–13.CrossRefGoogle Scholar
  9. 9.
    Ganti S, Weiss RH. Urine metabolomics for kidney cancer detection and biomarker discovery. Urol Oncol. 2011;29(5):551–7.CrossRefGoogle Scholar
  10. 10.
    Monteiro MS, Carvalho M, Bastos ML, Pinho PG. Biomarkers in renal cell carcinoma: a metabolomics approach. Metabolomics. 2014;10:1210–22.CrossRefGoogle Scholar
  11. 11.
    Yoshimura K, Chen LC, Mandal MK, Nakazawa T, Yu Z, Uchiyama T, et al. Analysis of renal cell carcinoma as a first step for developing mass spectrometry-based diagnostics. J Am Soc Mass Spectrom. 2012;23(10):1741–9.CrossRefGoogle Scholar
  12. 12.
    Dill AL, Eberlin LS, Zheng C, Costa AB, Ifa DR, Cheng L, et al. Multivariate statistical differentiation of renal cell carcinomas based on lipidomic analysis by ambient ionization imaging mass spectrometry. Anal Bioanal Chem. 2010;398(7–8):2969–78.CrossRefGoogle Scholar
  13. 13.
    Santagata S, Eberlin LS, Norton I, Calligaris D, Feldman DR, Ide JL, et al. Intraoperative mass spectrometry mapping of an onco-metabolite to guide brain tumor surgery. Proc Natl Acad Sci U S A. 2014;111(30):11121–6.CrossRefGoogle Scholar
  14. 14.
    Eberlin LS, Norton I, Orringer D, Dunn IF, Liu X, Ide JL, et al. Ambient mass spectrometry for the intraoperative molecular diagnosis of human brain tumors. Proc Natl Acad Sci U S A. 2013;110(5):1611–6.CrossRefGoogle Scholar
  15. 15.
    Schafer KC, Balog J, Szaniszlo T, Szalay D, Mezey G, Denes J, et al. Real time analysis of brain tissue by direct combination of ultrasonic surgical aspiration and sonic spray mass spectrometry. Anal Chem. 2011;83(20):7729–35.CrossRefGoogle Scholar
  16. 16.
    Agar NY, Golby AJ, Ligon KL, Norton I, Mohan V, Wiseman JM, et al. Development of stereotactic mass spectrometry for brain tumor surgery. Neurosurgery. 2011;68(2):280.CrossRefGoogle Scholar
  17. 17.
    Balog J, Sasi-Szabo L, Kinross J, Lewis MR, Muirhead LJ, Veselkov K, et al. Intraoperative tissue identification using rapid evaporative ionization mass spectrometry. Sci Transl Med. 2013;5(194):194ra93.CrossRefGoogle Scholar
  18. 18.
    Balog J, Kumar S, Alexander J, Golf O, Huang J, Wiggins T, et al. In vivo endoscopic tissue identification by rapid evaporative ionization mass spectrometry (REIMS). Angew Chem Int Ed. 2015;54(38):11059–62.CrossRefGoogle Scholar
  19. 19.
    Marien E, Meister M, Muley T, Fieuws S, Bordel S, Derua R, et al. Non-small cell lung cancer is characterized by dramatic changes in phospholipid profiles. Int J Cancer. 2015;137(7):1539–48.CrossRefGoogle Scholar
  20. 20.
    Eberlin LS, Gabay M, Fan AC, Gouw AM, Tibshirani RJ, Felsher DW, et al. Alteration of the lipid profile in lymphomas induced by MYC overexpression. Proc Natl Acad Sci U S A. 2014;111(29):10450–5.CrossRefGoogle Scholar
  21. 21.
    Ifa DR, Eberlin LS. Ambient ionization mass spectrometry for cancer diagnosis and surgical margin evaluation. Clin Chem. 2016;62(1):111–23.CrossRefGoogle Scholar
  22. 22.
    Kerian KS, Jarmusch AK, Pirro V, Koch MO, Masterson TA, Cheng L, et al. Differentiation of prostate cancer from normal tissue in radical prostatectomy specimens by desorption electrospray ionization and touch spray ionization mass spectrometry. Analyst. 2015;140(4):1090–8.CrossRefGoogle Scholar
  23. 23.
    Mandal MK, Saha S, Yoshimura K, Shida Y, Takeda S, Nonami H, et al. Biomolecular analysis and cancer diagnostics by negative mode probe electrospray ionization. Analyst. 2013;138(6):1682–8.CrossRefGoogle Scholar
  24. 24.
    Wiseman JM, Puolitaival SM, Takáts Z, Cooks RG, Caprioli RM. Mass spectrometric profiling of intact biological tissue by using desorption electrospray ionization. Angew Chemie Int Ed. 2005;117(43):7256–9.CrossRefGoogle Scholar
  25. 25.
    Alonso T, Morgan RO, Marvizon JC, Zarbl H, Santos E. Malignant transformation by ras and other oncogenes produces common alterations in inositol phospholipid signaling pathways. Proc Natl Acad Sci U S A. 1988;85(12):4271–5.CrossRefGoogle Scholar
  26. 26.
    Chaurio RA, Janko C, Muñoz L, Frey B, Herrmann M, Gaipl U. Phospholipids: key players in apoptosis and immune regulation. Molecules. 2009;14(12):4892–914.CrossRefGoogle Scholar
  27. 27.
    Ackerman D, Simon MC. Hypoxia, lipids, and cancer: surviving the harsh tumor microenvironment. Trends Cell Biol. 2014;24(8):472–8.CrossRefGoogle Scholar
  28. 28.
    Kerian KS, Jarmusch AK, Cooks RG. Touch spray mass spectrometry for in situ analysis of complex samples. Analyst. 2014;139:2714–20.CrossRefGoogle Scholar
  29. 29.
    Mandal MK, Yoshimura K, Chen LC, Yu Z, Nakazawa T, Katoh R, et al. Application of probe electrospray ionization mass spectrometry (PESI-MS) to clinical diagnosis: solvent effect on lipid analysis. J Am Soc Mass Spectrom. 2012;23(11):2043–7.CrossRefGoogle Scholar
  30. 30.
    Yoshimura K, Mandal MK, Hara M, Fujii H, Chen LC, Tanabe K, et al. Real-time diagnosis of chemically induced hepatocellular carcinoma using a novel mass spectrometry-based technique. Anal Biochem. 2013;441(1):32–7.CrossRefGoogle Scholar
  31. 31.
    Balog J, Szaniszlo T, Schaefer KC, Denes J, Lopata A, Godorhazy L, et al. Identification of biological tissues by rapid evaporative ionization mass spectrometry. Anal Chem. 2010;82(17):7343–50.CrossRefGoogle Scholar
  32. 32.
    Takats Z, Wiseman JM, Gologan B, Cooks RG. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science. 2004;306:471–3.CrossRefGoogle Scholar
  33. 33.
    Eberlin LS, Ferreira CR, Dill AL, Ifa DR, Cheng L, Cooks RG. Nondestructive, histologically compatible tissue imaging by desorption electrospray ionization mass spectrometry. Chembiochem. 2011;12(14):2129–32.CrossRefGoogle Scholar
  34. 34.
    Eberlin LS, Tibshirani RJ, Zhang J, Longacre TA, Berry GJ, Bingham DB, et al. Molecular assessment of surgical-resection margins of gastric cancer by mass spectrometric imaging. Proc Natl Acad Sci U S A. 2014;111(7):2436–41.CrossRefGoogle Scholar
  35. 35.
    Jarmusch AK, Pirro V, Baird Z, Hattab EM, Cohen-Gadol AA, Cooks RG. Lipid and metabolite profiles of human brain tumors by desorption electrospray ionization-MS. Proc Natl Acad Sci U S A. 2016;113(6):1486–91.CrossRefGoogle Scholar
  36. 36.
    Shroff EH, Eberlin LS, Dang VM, Gouw AM, Gabay M, Adam SJ, et al. MYC oncogene overexpression drives renal cell carcinoma in a mouse model through glutamine metabolism. Proc Natl Acad Sci U S A. 2015;112(21):6539–44.CrossRefGoogle Scholar
  37. 37.
    Calligaris D, Feldman DR, Norton I, Olubiyi O, Changelian AN, Machaidze R, et al. MALDI mass spectrometry imaging analysis of pituitary adenomas for near-real-time tumor delineation. Proc Natl Acad Sci U S A. 2015;112(32):9978–83.CrossRefGoogle Scholar
  38. 38.
    Prentice BM, Chumbley CW, Caprioli RM. High-speed MALDI MS/MS imaging mass spectrometry using continuous raster sampling. J Mass Spectrom. 2015;50(4):703–10.CrossRefGoogle Scholar
  39. 39.
    Spraggins JM, Caprioli RM. High-speed MALDI-TOF imaging mass spectrometry: rapid ion image acquisition and considerations for next generation instrumentation. J Am Soc Mass Spectrom. 2011;22(6):1022–31.CrossRefGoogle Scholar
  40. 40.
    Bennet RV, Gamage CM, Fernandez FM. Imaging of biological tissues by desorption electrospray ionization mass spectrometry. J Vis Exp. 2013;77:e50575.Google Scholar
  41. 41.
    Pirro V, Eberlin LS, Oliveri P, Cooks RG. Interactive hyperspectral approach for exploring and interpreting DESI-MS images of cancerous and normal tissue sections. Analyst. 2012;137(10):2374–80.CrossRefGoogle Scholar
  42. 42.
    Pirro V, Oliveri P, Ferreira CR, Gonzalez-Serrano AF, Machaty Z, Cooks RG. Lipid characterization of individual porcine oocytes by dual mode DESI-MS and data fusion. Anal Chim Acta. 2014;848:51–60.CrossRefGoogle Scholar
  43. 43.
    González-Serrano AF, Pirro V, Ferreira CR, Oliveri P, Eberlin LS, Heinzmann J, et al. Desorption electrospray ionization mass spectrometry reveals lipid metabolism of individual oocytes and embryos. PLoS ONE. 2013;8(9):e74981.CrossRefGoogle Scholar
  44. 44.
    Alonso T, Santos E. Increased intracellular glycerophosphoinositol is a biochemical marker for transformation by membrane-associated and cytoplasmic oncogenes. Biochem Biophys Res Commun. 1990;171(1):14–9.CrossRefGoogle Scholar
  45. 45.
    Ricketts CJ, Linehan WM. Intratumoral heterogeneity in kidney cancer. Nat Genet. 2014;46(3):214–5.CrossRefGoogle Scholar
  46. 46.
    Gerlinger M, Horswell S, Larkin J, Rowan AJ, Salm MP, Varela I, et al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat Genet. 2014;46(3):225–33.CrossRefGoogle Scholar
  47. 47.
    Sterious SN, Simhan J, Smaldone MC, Tsai KJ, Canter D, Wameedh E, et al. Is there a benefit to frozen section analysis at the time of partial nephrectomy? Can J Urol. 2013;20(3):6778–84.Google Scholar
  48. 48.
    Sutherland SE, Resnick MI, Maclennan GT, Goldman HB. Does the size of the surgical margin in partial nephrectomy for renal cell cancer really matter? J Urol. 2001;167(1):61–4.CrossRefGoogle Scholar
  49. 49.
    Lam JS, Bergman J, Breda A, Schulam PG. Importance of surgical margins in the management of renal cell carcinoma. Nat Clin Pract Urol. 2008;5(6):308–17.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Clint M. Alfaro
    • 1
  • Alan K. Jarmusch
    • 1
  • Valentina Pirro
    • 1
  • Kevin S. Kerian
    • 1
  • Timothy A. Masterson
    • 2
  • Liang Cheng
    • 3
  • R. Graham Cooks
    • 1
    Email author
  1. 1.Department of Chemistry, Center for Analytical Instrumentation Development and Purdue University Center for Cancer ResearchPurdue UniversityWest LafayetteUSA
  2. 2.Department of Urology, Indiana University School of MedicineIndiana University Melvin and Bren Simon Cancer CenterIndianapolisUSA
  3. 3.Department of Pathology and Laboratory Medicine, Indiana University School of MedicineIndiana University Melvin and Bren Simon Cancer CenterIndianapolisUSA

Personalised recommendations