Advertisement

Analytical and Bioanalytical Chemistry

, Volume 408, Issue 26, pp 7299–7309 | Cite as

Screen-printed electrode modified with carbon black and chitosan: a novel platform for acetylcholinesterase biosensor development

  • Daria Talarico
  • Fabiana Arduini
  • Aziz Amine
  • Ilaria Cacciotti
  • Danila Moscone
  • Giuseppe Palleschi
Research Paper
Part of the following topical collections:
  1. Chemical Sensing Systems

Abstract

We report a screen-printed electrode (SPE) modified with a dispersion of carbon black (CB) and chitosan by drop casting. A cyclic voltammetry technique towards ferricyanide, caffeic acid, hydroquinone, and thiocholine was performed and an improvement of the electrochemical response with respect to bare SPE as well as SPE modified only with chitosan was observed. The possibility to detect thiocholine at a low applied potential with high sensitivity was exploited and an acetylcholinesterase (AChE) biosensor was developed. A dispersion of CB, chitosan, and AChE was used to fabricate this biosensor in one step by drop casting. The enzymatic activity of the immobilized AChE was determined measuring the enzymatic product thiocholine at +300 mV. Owing to the capability of organophosphorus pesticides to inhibit AChE, this biosensor was used to detect these pollutants, and paraoxon was taken as model compound. The enzyme inhibition was linearly related to the concentration of paraoxon up to 0.5 μg L–1, and a low detection limit equal to 0.05 μg L–1 (calculated as 10% of inhibition) was achieved. This biosensor was challenged for paraoxon detection in drinking waters with satisfactory recovery values. The use of AChE embedded in a dispersion of CB and chitosan allowed an easy and fast production of a sensitive biosensor suitable for paraoxon detection in drinking waters at legal limit levels.

Graphical Abstract

Biosensors based on screen-printed electrodes modified with Acetylcholinesterase, Carbon Black, and Chitosan for organophosphorus pesticide detection

Keywords

Acetylcholinesterase biosensor Carbon black Chitosan Pesticides Amperometric detection Paraoxon 

Notes

Acknowledgments

G.P. thanks EU Ocean 2013 Project SMS FP7-OCEAN-2013 (grant number 613844), F.A. thanks the Minister of Defence, Aptamer BW project for financial support, D.T. thanks the International Research Staff Exchange Scheme (IRSES) grant under the Marie Curie Actions program Peptide Nanosensors (grant number N 29490).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2016_9604_MOESM1_ESM.pdf (147 kb)
ESM 1 (PDF 147 kb)

References

  1. 1.
    Jariwala D, Sangwan VK, Lincoln JL, Marksab TJ, Hersam MC. Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem Soc Rev. 2013;42:2824–60.CrossRefGoogle Scholar
  2. 2.
    Wightman RM, Deakin MR, Kovach PM, Kuhr WG, Stutts KJ. Methods to improve electrochemical reversibility at carbon electrodes. J Electrochem Soc. 1984;131:1578–83.CrossRefGoogle Scholar
  3. 3.
    Lo WB, Aldousa L, Compton RG. The use of nano-carbon as an alternative to multi-walled carbon nanotubes in modified electrodes for the adsorptive stripping voltammetry. Sensors Actuators B. 2012;162:361–8.CrossRefGoogle Scholar
  4. 4.
    Wang Y, Li Y, Tang L, Lu J, Li J. Application of graphene-modified electrode for selective detection of dopamine. Electrochem Commun. 2009;11:889–92.CrossRefGoogle Scholar
  5. 5.
    García-González R, Fernández-La Villa A, Costa-García A, Fernández-Abedul MT. Dispersion studies of carboxyl, amine and thiol-functionalized carbon nanotubes for improving the electrochemical behavior of screen printed electrodes. Sensors Actuators B. 2013;181:353–60.CrossRefGoogle Scholar
  6. 6.
    Donnet JB, Bansal RC, Wang MJ (1993) Science and Technology, 2nd ed. NewYorkGoogle Scholar
  7. 7.
    Ivanov AN, Younusov RR, Evtugyn GA, Arduini F, Moscone D, Palleschi G. Acetylcholinesterase biosensor based on single-walled carbon nanotubes—Co phtalocyanine for organophosphorus pesticides detection. Talanta. 2011;85:216–21.CrossRefGoogle Scholar
  8. 8.
    Ciesielski A, Samorì P. Graphene via sonication assisted liquid-phase exfoliation. Chem Soc Rev. 2014;431:381–98.CrossRefGoogle Scholar
  9. 9.
    Arduini F, Amine A, Majorani C, Di Giorgio F, De felicis D, Cataldo F, et al. High performance electrochemical sensor based on modified screen-printed electrodes with cost-effective dispersion of nanostructured carbon black. Electrochem Commun. 2010;12:346–50.CrossRefGoogle Scholar
  10. 10.
    Balasubramanian K, Burghard M. Chemically functionalized carbon nanotubes. Small. 2005;1:180–92.CrossRefGoogle Scholar
  11. 11.
    Mukhopadhyay P, Gupta RK. Trends and frontiers in graphene-based polymer nanocomposites. Plast Eng. 2011;671:32–42.Google Scholar
  12. 12.
    Blanch AJ, Lenehan CE, Quinton JS. Optimizing surfactant concentrations for dispersion of single-walled carbon nanotubes in aqueous solution. J Phys Chem B. 2010;11430:9805–11.CrossRefGoogle Scholar
  13. 13.
    Tkac J, Whittaker JW, Ruzgas T. The use of single walled carbon nanotubes dispersed in a chitosan matrix for preparation of a galactose biosensor. Biosens Bioelectron. 2007;228:1820–4.CrossRefGoogle Scholar
  14. 14.
    Lu XL, Xu JJ, Du Y, Chen HY. A glucose biosensor based on chitosan–glucose oxidase–gold nanoparticles biocomposite formed by one-step electrodeposition. Anal Biochem. 2004;334:284–9.CrossRefGoogle Scholar
  15. 15.
    Barsan MM, David M, Florescu M, Ţugulea L, Brett CM. A new self-assembled layer-by-layer glucose biosensor based on chitosan biopolymer entrapped enzyme with nitrogen doped graphene. Bioelectrochemistry. 2014;99:46–52.CrossRefGoogle Scholar
  16. 16.
    Mao JS, Liu HF, Yin YJ, Yao KD. The properties of chitosan-gelatin membranes and scaffolds modified with hyaluronic acid by different methods. Biomaterials. 2003;24:1621–9.CrossRefGoogle Scholar
  17. 17.
    Sato T, Ishii T, Okahata Y. In vitro gene delivery mediated by chitosan. Effect of pH, serum, and molecular mass of chitosan on the transfection efficiency. Biomaterials. 2001;22:2075–80.CrossRefGoogle Scholar
  18. 18.
    Gingras M, Paradis I, Berthod F. Nerve regeneration in a collagen–chitosan tissue-engineered skin transplanted on nude mice. Biomaterials. 2003;24:1653–61.CrossRefGoogle Scholar
  19. 19.
    Zappino M, Cacciotti I, Benucci I, Nanni F, Liburdi K, Valentini F, et al. Bromelain immobilization on microbial and animal source chitosan film for application in wine-like medium: microstructural, mechanical, and catalytic characterizations. Food Hydrocoll. 2015;45:41–7.CrossRefGoogle Scholar
  20. 20.
    Anu S, Sinsinbar G, Choudhary M, Kumar V, Pasricha R, Verma HN, et al. Graphene oxide-chitosan nanocomposite based electrochemical DNA biosensor for detection of typhoid. Sensors Actuators B. 2013;18:675–84.Google Scholar
  21. 21.
    Suginta W, Khunkaewla P, Schulte A. Electrochemical biosensor applications of polysaccharides chitin and chitosan. Chem Rev. 2013;113:5458–79.Google Scholar
  22. 22.
    Yang X, Tu Y, Li L, Shang S, Tao XM. Well-dispersed chitosan/graphene oxide nanocomposites. ACS Appl Mater Interface. 2010;2:1707–13.CrossRefGoogle Scholar
  23. 23.
    Zhang M, Smith A, Gorski W. Carbon Nanotube−Chitosan System for Electrochemical Sensing Based on Dehydrogenase Enzymes. Anal Chem. 2004;76:5045–50.CrossRefGoogle Scholar
  24. 24.
    Chen X, Li C, Liu Y, Du Z, Xu S, Li L, et al. Electrocatalytic activity of horseradish peroxidase/chitosan/carbon microsphere microbiocomposites to hydrogen peroxide. Talanta. 2008;77:37–41.CrossRefGoogle Scholar
  25. 25.
    Li Y, Bai Y, Han G, Li M. Porous-reduced graphene oxide for fabricating an amperometric acetylcholinesterase biosensor. Sensors Actuators B. 2013;185:706–12.CrossRefGoogle Scholar
  26. 26.
    Vicentini FC, Ravanini AE, Figueiredo-Filho LC, Iniesta J, Banks CE, Fatibello-Filho O. Imparting improvements in electrochemical sensors: evaluation of different carbon blacks that give rise to significant improvement in the performance of electroanalytical sensing platforms. Electrochim Acta. 2015;157:125–33.CrossRefGoogle Scholar
  27. 27.
    Arduini F, Di Nardo F, Amine A, Micheli L, Palleschi G, Moscone D. Carbon Black-Modified Screen-Printed Electrodes as Electroanalytical Tools. Electroanalysis. 2012;24:743–51.CrossRefGoogle Scholar
  28. 28.
    Arduini F, Majorani C, Amine A, Moscone D, Palleschi G. Hg2+ detection by measuring thiol groups with a highly sensitive screen-printed electrode modified with a nanostructured carbon black film. Electrochim Acta. 2011;56:4209–15.CrossRefGoogle Scholar
  29. 29.
    Portaccio M, Di Tuoro D, Arduini F, Moscone D, Cammarota M, Mita DG, et al. Laccase biosensor based on screen-printed electrode modified with thionine–carbon black nanocomposite, for Bisphenol A detection. Electrochim Acta. 2013;109:340–7.CrossRefGoogle Scholar
  30. 30.
    Talarico D, Arduini F, Constantino A, Del Carlo M, Compagnone D, Moscone D, et al. Carbon black as successful screen-printed electrode modifier for phenolic compound detection. Electrochem Commun. 2015;60:78–82.CrossRefGoogle Scholar
  31. 31.
    Cinti S, Arduini F, Vellucci G, Cacciotti I, Nanni F, Moscone D. Carbon black assisted tailoring of Prussian Blue nanoparticles to tune sensitivity and detection limit towards H2O2 by using screen-printed electrode. Electrochem Commun. 2014;47:63–6.CrossRefGoogle Scholar
  32. 32.
    Talarico D, Cinti S, Arduini F, Amine A, Moscone D, Palleschi G. Phosphate detection through a cost-effective carbon black nanoparticle-modified screen-printed electrode embedded in a continuous flow system. Environ Sci Technol. 2015;49:7934–9.CrossRefGoogle Scholar
  33. 33.
    Cinti S, Neagu D, Carbone M, Cacciotti I, Moscone D, Arduini F. Novel carbon black-cobalt phthalocyanine nanocomposite as sensing platform to detect organophosphorus pollutants at screen-printed electrode. Electrochim Acta. 2016;188:574–81.CrossRefGoogle Scholar
  34. 34.
    Du D, Huang X, Cai J, Zhang A. Amperometric detection of triazophos pesticide using acetylcholinesterase biosensor based on multiwall carbon nanotube–chitosan matrix. Sensors Actuators B. 2007;27:531–5.CrossRefGoogle Scholar
  35. 35.
    Du D, Ding J, Cai J, Zhang A. One-step electrochemically deposited interface of chitosan–gold nanoparticles for acetylcholinesterase biosensor design. J Electroanal Chem. 2007;605:53–60.CrossRefGoogle Scholar
  36. 36.
    Du D, Huang X, Cai J, Zhang A, Ding J, Chen S. An amperometric acetylthiocholine sensor based on immobilization of acetylcholinesterase on a multiwall carbon nanotube–cross-linked chitosan composite. Anal Bioanal Chem. 2007;387:1059–65.CrossRefGoogle Scholar
  37. 37.
    Arduini F, Ricci F, Bourais I, Amine A, Moscone D, Palleschi G. Extraction and detection of pesticides by cholinesterase inhibition in a two-phase system: a strategy to avoid heavy metal interference. Anal Lett. 2005;38:1703–19.CrossRefGoogle Scholar
  38. 38.
    Arduini F, Ricci F, Tuta CS, Moscone D, Amine A, Palleschi G. Detection of carbamic and organophosphorus pesticides in water samples using a cholinesterase biosensor based on Prussian Blue-modified screen-printed electrode. Anal Chim Acta. 2006;580:155–62.CrossRefGoogle Scholar
  39. 39.
    Ellman GL. A colorimetric method for determining low concentrations of mercaptans. Arch Biochem Biophys. 1958;74:443–5.CrossRefGoogle Scholar
  40. 40.
    Nicholson RS. Theory and Application of Cyclic Voltammetry for Measurement of Electrode Reaction Kinetics. Anal Chem. 1965;37:1351–5.CrossRefGoogle Scholar
  41. 41.
    Bard AJ, Faulkner LR (2000) Electrochemical Methods: Fundamentals and Applications. John Wiley and SonsGoogle Scholar
  42. 42.
    Arduini F, Zanardi C, Cinti S, Terzi F, Moscone D, Palleschi G, et al. Effective electrochemical sensor based on screen-printed electrodes modified with a carbon black-Au nanoparticles composite. Sensors Actuators B. 2015;212:536–43.CrossRefGoogle Scholar
  43. 43.
    Xueji Z, Ju H, Wang J (2011) Electrochemical sensors, biosensors, and their biomedical applications. Academic PressGoogle Scholar
  44. 44.
    Yang L, Guangcan W, Yongjun L. An acetylcholinesterase biosensor based on platinum nanoparticles–carboxylic graphene–nafion-modified electrode for detection of pesticides. Anal Biochem. 2013;4372:144–9.CrossRefGoogle Scholar
  45. 45.
    Yang Y, Asiri AM, Du D, Lin Y. Acetylcholinesterase biosensor based on a gold nanoparticle–polypyrrole reduced graphene oxide nanocomposite modified electrode for the amperometric detection of organophosphorus pesticides. Analyst. 2014;139:3055–60.CrossRefGoogle Scholar
  46. 46.
    Arduini F, Amine A, Moscone D, Palleschi G. Biosensors based on cholinesterase inhibition for insecticides, nerve agents and aflatoxin B1 detection. Microchim Acta. 2010;170:193–214.CrossRefGoogle Scholar
  47. 47.
    Tasselli F, Mirmohseni A, Dorraji MS, Figoli A. Mechanical, swelling and adsorptive properties of dry–wet spun chitosan hollow fibers crosslinked with glutaraldehyde. React Funct Polym. 2013;73:218–23.CrossRefGoogle Scholar
  48. 48.
    Amine A, Arduini F, Moscone D, Palleschi G. Recent advances in biosensors based on enzyme inhibition. Biosens Bioelectron. 2016;76:180–94.CrossRefGoogle Scholar
  49. 49.
    49. Orazem ME, Tribollet B (2011) Electrochemical impedance spectroscopy. John Wiley and SonsGoogle Scholar
  50. 50.
    Randles JEB. Kinetics of rapid electrode reactions. Discuss Faraday Soc. 1947;1:11–9.CrossRefGoogle Scholar
  51. 51.
    Arduini F, Forchielli M, Amine A, Neagu D, Cacciotti I, Nanni F, et al. Screen-printed biosensor modified with carbon black nanoparticles for the determination of paraoxon based on the inhibition of butyrylcholinesterase. Microchim Acta. 2015;182:643–51.CrossRefGoogle Scholar
  52. 52.
    Upadhyay S, Rao GR, Sharma MK, Bhattacharya BK, Rao VK, Vijayaraghavan R. Immobilization of acetylcholinesterase–choline oxidase on a gold–platinum bimetallic nanoparticles modified glassy carbon electrode for the sensitive detection of organophosphate pesticides, carbamates and nerve agents. Biosens Bioelectron. 2009;25:832–8.CrossRefGoogle Scholar
  53. 53.
    Gulla KC, Gouda MD, Thakur MS, Karanth NG. Reactivation of immobilized acetyl cholinesterase in an amperometric biosensor for organophosphorus pesticide. Biochim Biophys Acta. 2002;1597:133–9.CrossRefGoogle Scholar
  54. 54.
    Zamfir L, Rotariu L, Bala C. A novel, sensitive, reusable, and low potential acetylcholinesterase biosensor for chlorpyrifos based on 1-butyl-3-methylimidazolium tetrafluoroborate/multiwalled carbon nanotubes gel. Biosens Bioelectron 268:3692–3695Google Scholar
  55. 55.
    Curtil C, Masson P. Aging of cholinesterase after inhibition by organophosphates. Ann Pharmacy Fr. 1993;51:63–177.Google Scholar
  56. 56.
    Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumptionGoogle Scholar
  57. 57.
    57. Scott AO (1998) Biosensors for food analysis. ElsevierGoogle Scholar
  58. 58.
    Zhang H, Li ZF, Snyder A, Xie J, Stanciu LA. Functionalized graphene oxide for the fabrication of paraoxon biosensors. Anal Chim Acta. 2014;827:86–94.CrossRefGoogle Scholar
  59. 59.
    Dutta RR, Puzari P. Amperometric biosensing of organophosphate and organocarbamate pesticides utilizing polypyrrole entrapped acetylcholinesterase electrode. Biosens Bioelectron. 2014;52:166–72.CrossRefGoogle Scholar
  60. 60.
    Arduini F, Guidone S, Amine A, Palleschi G, Moscone D. Acetylcholinesterase biosensor based on self-assembled monolayer-modified gold-screen printed electrodes for organophosphorus insecticide detection. Sensors Actuators B. 2013;179:201–8.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Daria Talarico
    • 1
  • Fabiana Arduini
    • 1
    • 2
  • Aziz Amine
    • 3
  • Ilaria Cacciotti
    • 4
    • 5
  • Danila Moscone
    • 1
    • 2
  • Giuseppe Palleschi
    • 1
    • 2
  1. 1.Department of Chemical Science and TechnologiesUniversity of Rome “Tor Vergata”RomeItaly
  2. 2.Biostructures and Biosystems National InstituteRomeItaly
  3. 3.Faculté de Sciences et Techniques Laboratoire Génie des Procédés et EnvironnementUniversité Hassan II-Mohammedia de CasablancaMohammadiaMorocco
  4. 4.Engineering DepartmentUniversity of Rome “Niccolò Cusano”RomeItaly
  5. 5.Italian Interuniversity Consortium on Materials Science and Technology (INSTM)RomeItaly

Personalised recommendations