Analytical and Bioanalytical Chemistry

, Volume 408, Issue 16, pp 4403–4411 | Cite as

Gold-sputtered Blu-ray discs: simple and inexpensive SERS substrates for sensitive detection of melamine

  • Michél K. Nieuwoudt
  • Jacob W. Martin
  • Reece N. Oosterbeek
  • Nina I. Novikova
  • Xindi Wang
  • Jenny Malmström
  • David E. Williams
  • M. Cather Simpson
Research Paper


Nanostructured gold substrates provide chemically stable, signal-enhancing substrates for the sensitive detection of a variety of compounds through surface-enhanced Raman spectroscopy (SERS). Recent developments in advanced fabrication methods have enabled the manufacture of SERS substrates with repeatable surface nanostructures that provide reproducible quantitative analysis, historically a weakness of the SERS technique. Here, we describe the novel use of gold-sputtered Blu-ray disc surfaces as SERS substrates. The unique surface features and composition of the Blu-ray disc recording surface lead to the formation of gold nano-islands and nanogaps following simple gold sputtering, without any background peaks from the substrate. The SERS performance of this substrate is strong and reproducible with an enhancement factor (EF) of 103 for melamine. A limit of detection (LOD) for this compound of 70 ppb and average reproducibility of ±12 % were achieved. Gold-sputtered Blu-ray discs thus offer an excellent alternative to more exotic gold SERS substrates prepared by advanced, time-consuming and expensive methods.

Graphical abstract

AFM 3D images of 1-μm2 sections of uncoated and gold-sputtered recordable Blu-ray disc (BD-R) surfaces and the SERS signal obtained on the gold-sputtered surface for a 1000 ppm aqueous solution of melamine.


SERS Blu-ray discs Melamine SERS substrates 



The support for this research from Fonterra is gratefully acknowledged. The support from the Faculty of Science at the University of Auckland and the Ministry of Business, Innovation and Employment (UOAX0812) and the assistance of Dr. Gordon Miskelly with UV-vis reflectance measurements are acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2016_9545_MOESM1_ESM.pdf (554 kb)
ESM 1 (PDF 554 KB)


  1. 1.
    Moskovits M. Phys Chem Chem Phys. 2013;15:530.CrossRefGoogle Scholar
  2. 2.
    McCreery RL. Raman spectroscopy for chemical analysis. 3rd ed. New York: Wiley; 2000.CrossRefGoogle Scholar
  3. 3.
    Kneipp HK, Itzkan I, Dasari RR, Feld MS. Chem Rev. 1999;99:2957.CrossRefGoogle Scholar
  4. 4.
    Le Ru EC, Etchegoin PG. Principles of surface-enhanced Raman spectroscopy and related plasmonic effects. Amsterdam: Elsevier; 2009.Google Scholar
  5. 5.
    Merlen A, Chevallier V, Valmalette JC, Patrone L, Torchio P, Vedraine S, et al. Surf Sci. 2011;605:1214.CrossRefGoogle Scholar
  6. 6.
    Laurence TA, Braun GB, Reich NO, Moskovits M. Nano Lett. 2012;12(6):2912.CrossRefGoogle Scholar
  7. 7.
    Aroca R. Surface enhanced vibrational spectroscopy. Chichester: Wiley; 2006.CrossRefGoogle Scholar
  8. 8.
    Fang Y, Seong Y, Dlott DD. Nano Lett. 2012;12:2912.CrossRefGoogle Scholar
  9. 9.
    Ko H, Singamaneni S, Tsukruk VV. Small. 2008;4(10):1576.CrossRefGoogle Scholar
  10. 10.
    Halas NJ, Lal S, Chang WS, Link S, Nordlander P. Chem Rev. 2011;111(6):3913.CrossRefGoogle Scholar
  11. 11.
    Guerrini L, Graham D. Chem Soc Rev. 2012;41(21):7085.CrossRefGoogle Scholar
  12. 12.
    Sinturel C, Vayer M, Morris M, Hillmyer MA. Macromolecules. 2013;46(14):5399.CrossRefGoogle Scholar
  13. 13.
    Tian Z, Ren B, Wu D. J Phys Chem. 2002;106(37):9463.CrossRefGoogle Scholar
  14. 14.
    Larmour IA, Graham D. Analyst. 2011;136(19):3831.CrossRefGoogle Scholar
  15. 15.
    Alvarez-Puebla RA, Liz-Maran LM. Chem Soc Rev. 2012;41(1):43.CrossRefGoogle Scholar
  16. 16.
    Yin Y, Qiu T, Zhang W, Chu PK. J Mater Res. 2011;26(02):170.CrossRefGoogle Scholar
  17. 17.
    Fan M, Andrade GF, Brolo AG. Anal Chim Acta. 2011;693(1–2):7.CrossRefGoogle Scholar
  18. 18.
    Mahajan S, Baumberg JJ, Russell AE, Bartlett PN. Phys Chem Chem Phys. 2007;9(45):6016.CrossRefGoogle Scholar
  19. 19.
    Guicheteau J, Christesen S, Emge D, Wilcox P, Fountain AW. Appl Spectrosc. 2011;65(2).Google Scholar
  20. 20.
    Lin M, He L, Awika J, Yang L, Ledoux DR, Li H, et al. J Food Sci. 2008;73(8):T129.CrossRefGoogle Scholar
  21. 21.
    Liu B, Lin M, Li H. Sens Ins Food Qual Safety. 2010;4(1):13.CrossRefGoogle Scholar
  22. 22.
    Almaviva S, Botti S, Cantarini L, Fantoni R, Lecci S, Palucci A, et al. Spectrosc. 2014;45:41.Google Scholar
  23. 23.
    Cao G, Hajisalem G, Li W, Hofb F, Gordon R. Analyst. 2014;139:5375.CrossRefGoogle Scholar
  24. 24.
    Tripathi A, Emmons ED, Fountain AW, Guicheteau JA, Moskovits M, Christesen SD. ACS Nano. 2015;9:584.CrossRefGoogle Scholar
  25. 25.
    Sun X, Dong X. Guangpuxue Yu Guangpu Fenxi. 2015;35:1572.Google Scholar
  26. 26.
    Perney NMB, Baumberg JJ, Zoorob ME, Charlton MDB, Mahnkopf S, Netti CM, ePrints Soton, University of Southampton, 2005.Google Scholar
  27. 27.
    Bianco GV, Losurdo M, Giangregorio MM, Capezzuto P, Bruno G. Plasmonics. 2013;8:159.CrossRefGoogle Scholar
  28. 28.
    Geissler M, Li K, Cui B, Clime L, Veres T. J Phys Chem C. 2009;113:17296.CrossRefGoogle Scholar
  29. 29.
    Kaplan B, Guner H, Senlik O, Gurel K, Bayindir M, Dana A. Plasmonics. 2009;4(3):237.CrossRefGoogle Scholar
  30. 30.
    Dou X, Chung P, Jiang P, Dai J. Appl Phys Lett. 2012;100(4):041116.CrossRefGoogle Scholar
  31. 31.
    Fontana E. Appl Optics. 2004;43(1):79–87.CrossRefGoogle Scholar
  32. 32.
    Bhatnagar K, Pathak A, Menke D, Cornish PV, Gangopadhyay K, Korampally V, et al. Nanotechnology. 2012;23(49):495201.CrossRefGoogle Scholar
  33. 33.
    Kneipp K, Kneipp H, Ramachandra RD, Feld MS. Surface enhanced Raman spectroscopy: a brief perspective. In: Moskovits M, Kneipp K, Kneipp H, editors. Surface-enhanced Raman scattering: physics and applications. Berlin: Springer; 2006.CrossRefGoogle Scholar
  34. 34.
    Giallongo G, Pilot R, Durante C, Rizzi GA, Signorini R, Bozio R, et al. Plasmonics. 2011;6(4):725.CrossRefGoogle Scholar
  35. 35.
    Hori H, Tawa K, Kintaka K, Nishii J, Tatsu Y. Opt Rev. 2009;16(2):216.CrossRefGoogle Scholar
  36. 36.
    Song YL, Luo D, Ye S, Hou H, Wang L. Appl Surf Sci. 2012;258:2584.CrossRefGoogle Scholar
  37. 37.
    Merlen A, Gardenne V, Romann J, Chevallier V, Patrone L, Valmalette JC. Nanotechnology. 2009;20(21):215705.CrossRefGoogle Scholar
  38. 38.
    Moore JC, Spink J, Lipp M. J Food Sci. 2012;77(4):R118.CrossRefGoogle Scholar
  39. 39.
    World Health Organisation, Toxicological and Health aspects of melamine and cyanuric acid. In: Report of a WHO expert meeting, in collaboration with FAO and supported by Health Canada. Ottawa, 2009.Google Scholar
  40. 40.
    Nieuwoudt MK, Martin JW, Oosterbeek RN, Novikova NI, Wang X, Malmström J et al, Proc. SPIE 9332, Optical diagnostics and sensing XV: toward point-of-care diagnostics. L Gerard editors, 933207 (2015); San Francisco. 2015 doi: 10.1117/12.2078638.
  41. 41.
    Moulder JF, Stickle WF, Sobol PE, Bomben KD. Handbook of X-ray photoelectron spectroscopy. Eden Prairie: Perkin-Elmer Corporation; 1992.Google Scholar
  42. 42.
  43. 43.
    Koglin E, Kip BJ, Meier RJ. J Phys Chem. 1996;100:5078.CrossRefGoogle Scholar
  44. 44.
    International Conference on Harmonization (ICH) of technical requirements for the registration of pharmaceuticals for human use, validation of analytical procedures: text and methodology. ICH-Q2B, Geneva; 1996.Google Scholar
  45. 45.
  46. 46.
    Turnipseed S, Casev C, Nochetto C, Heller DN, Determination of melamine and cyanuric acid residues in infant formula using LC-MS/MS. LIB 4421 melamine and cyanuric acid residues in infant formula. FDA, U.S. Food and Drug Administration: Silver Spring. 2008; Vol. 24.Google Scholar
  47. 47.
    Liu Y, Todd EE, Zhang Q, Shi JR, Liu XJ. J Zhejiang Univ Sci B. 2012;13(7):525.CrossRefGoogle Scholar
  48. 48.
    Tittlemier SA. Food Addit Contam: Part A. 2010;27(2):129.CrossRefGoogle Scholar
  49. 49.
    Sun F, Ma W, Xu L, Zhu Y, Liu L, Peng C, et al. Trends Anal Chem. 2010;29(11):1239.CrossRefGoogle Scholar
  50. 50.
    Silly F, Shaw AQ, Casell MR, Brigs GAD, Mura M, Marstinovich N, et al. J Phys Chem C. 2008;112:11476.CrossRefGoogle Scholar
  51. 51.
    Rakic AD, Djurišić AB, Elazar JM, Majewski ML. Appl Optics. 1998;37:5271.CrossRefGoogle Scholar
  52. 52.
    Kim A, Barcelo SJ, Williams RS, Li Z. Anal Chem. 2012;84(21):9303.Google Scholar
  53. 53.
    Wen ZQ, Li G, Ren D. Appl Spectrosc. 2011;65(5):514.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Michél K. Nieuwoudt
    • 1
    • 2
    • 3
  • Jacob W. Martin
    • 1
    • 2
    • 3
    • 4
  • Reece N. Oosterbeek
    • 1
    • 2
    • 4
  • Nina I. Novikova
    • 1
    • 2
    • 3
    • 4
  • Xindi Wang
    • 1
    • 2
    • 3
    • 4
  • Jenny Malmström
    • 1
    • 3
    • 5
  • David E. Williams
    • 1
    • 3
  • M. Cather Simpson
    • 1
    • 2
    • 3
    • 4
    • 6
  1. 1.MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical SciencesThe University of AucklandAucklandNew Zealand
  2. 2.The Photon FactoryThe University of AucklandAucklandNew Zealand
  3. 3.School of Chemical SciencesThe University of AucklandAucklandNew Zealand
  4. 4.The Dodd Walls Centre for Photonic and Quantum TechnologiesAucklandNew Zealand
  5. 5.Chemical and Materials EngineeringThe University of AucklandAucklandNew Zealand
  6. 6.Department of PhysicsThe University of AucklandAucklandNew Zealand

Personalised recommendations