Advertisement

Analytical and Bioanalytical Chemistry

, Volume 408, Issue 25, pp 7085–7094 | Cite as

Microscopic imaging and tuning of electrogenerated chemiluminescence with boron-doped diamond nanoelectrode arrays

  • Milica Sentic
  • Francesca Virgilio
  • Alessandra Zanut
  • Dragan Manojlovic
  • Stéphane Arbault
  • Massimo Tormen
  • Neso Sojic
  • Paolo UgoEmail author
Research Paper
Part of the following topical collections:
  1. Analytical Electrochemiluminescence

Abstract

Nanoelectrode arrays (NEAs) are increasingly applied for a variety of electroanalytical applications; however, very few studies dealt with the use of NEAs as an electrochemical generator of electrogenerated chemiluminescence (ECL). In the present study, arrays of nanodisc and nanoband electrodes with different dimensions and inter-electrode distances were fabricated by e-beam lithography on a polycarbonate layer deposited on boron-doped diamond (BDD) substrates. In particular, NEAs with 16 different geometries were fabricated on the same BDD sample substrate obtaining a multiple nanoelectrode and ultramicroelectrode array platform (MNEAP). After electrochemical and morphological characterization, the MNEAP was used to capture simultaneously with a single image the characteristic behaviour of ECL emission from all the 16 arrays. Experiments were performed using Ru(bpy)3 2+ as the ECL luminophore and tri-n-propylamine (TPrA) as the co-reactant. With a relatively limited number of experiments, such an imaging procedure allowed to study the role that geometrical and mechanistic parameters play on ECL generation at NEAs. In particular, at high concentrations of TPrA, well-separated individual ECL spots or bands revealed an ECL signal which forms a pattern matching the nanofabricated structure. The analysis of the imaging data indicated that the thickness of the ECL-emitting zone at each nanoelectrode scales inversely with the co-reactant concentration, while significantly stronger ECL signals were detected for NEAs operating under overlap conditions.

Keywords

Nanoelectrode Array Electrogenerated chemiluminescence Boron-doped diamond Microscopy Imaging 

Notes

Acknowledgments

MS acknowledges the financial supports from the Ministry of Science and Technological Development (Republic of Serbia) and from the French Foreign Ministry (Bourse d’Excellence Eiffel). FV, MT and PU thank MIUR (Rome) for the support by project PRIN 2010 AXENJ8.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2016_9504_MOESM1_ESM.pdf (378 kb)
ESM 1 Analytical & Bioanalytical Chemistry (PDF 378 kb)

References

  1. 1.
    Bard AJ. Electrogenerated chemiluminescence. New York: M. Dekker; 2004.CrossRefGoogle Scholar
  2. 2.
    Miao W. Electrogenerated chemiluminescence and its biorelated applications. Chem Rev. 2008;108:2506–53.CrossRefGoogle Scholar
  3. 3.
    Liu Z, Qi W, Xu G. Recent advances in electrochemiluminescence. Chem Soc Rev. 2015;44:3117–42.CrossRefGoogle Scholar
  4. 4.
    Hesari M, Ding Z. Review—Electrogenerated chemiluminescence: light years ahead. J Electrochem Soc. 2016;163:H3116–31.CrossRefGoogle Scholar
  5. 5.
    Rubinstein I, Bard AJ. Electrogenerated chemiluminescence. 37. Aqueous ECL systems based on Ru(2,2′-bipyridine)3 2+ and oxalate or organic acids. J Am Chem Soc. 1981;103:512–6.CrossRefGoogle Scholar
  6. 6.
    Jameison F, Sanchez RI, Dong L, Leland JK, Yost D, Martin MT. Electrochemiluminescence-based quantitation of classical clinical chemistry analytes. Anal Chem. 1996;68:1298–302.CrossRefGoogle Scholar
  7. 7.
    Blackburn GF, Shah HP, Kenten JH, Leland J, Kamin RA, Link J, et al. Electrochemiluminescence detection for development of immunoassays and DNA probe assays for clinical diagnostics. Clin Chem. 1991;37(9):1534–9.Google Scholar
  8. 8.
    Yang H, Leland JK, Yost D, Massey RJ. Electrochemiluminescence: a new diagnostic and research tool. Nat Biotechnol. 1994;12:193–4.CrossRefGoogle Scholar
  9. 9.
    Liu X, Shi L, Niu W, Li H, Xu G. Environmentally friendly and highly sensitive ruthenium(II) tris(2,2′-bipyridyl) electrochemiluminescent system using 2-(dibutylamino)ethanol as co-reactant. Angew Chem Int Ed. 2007;46:421–4.CrossRefGoogle Scholar
  10. 10.
    Yuan Y, Han S, Hu L, Parveen S, Xu G. Coreactants of tris(2,2′-bipyridyl)ruthenium(II) electrogenerated chemiluminescence. Electrochim Acta. 2012;82:484–92.CrossRefGoogle Scholar
  11. 11.
    Kebede N, Francis PS, Barbante GJ, Hogan CF. Electrogenerated chemiluminescence of tris(2,2[prime or minute] bipyridine)ruthenium(II) using common biological buffers as co-reactant, pH buffer and supporting electrolyte. Analyst. 2015;140:7142–5.CrossRefGoogle Scholar
  12. 12.
    Collinson MM, Pastore P, Maness KM, Wightman RM. Electrochemiluminescence interferometry at microelectrodes. J Am Chem Soc. 1994;116:4095–6.CrossRefGoogle Scholar
  13. 13.
    Amatore C, Pebay C, Servant L, Sojic N, Szunerits S, Thouin L. Mapping electrochemiluminescence as generated at double-band microelectrodes by confocal microscopy under steady state. ChemPhysChem. 2006;7:1322–7.CrossRefGoogle Scholar
  14. 14.
    Sentic M, Milutinovic M, Kanoufi F, Manojlovic D, Arbault S, Sojic N. Mapping electrogenerated chemiluminescence reactivity in space: mechanistic insight into model systems used in immunoassays. Chem Sci. 2014;5:2568–72.CrossRefGoogle Scholar
  15. 15.
    Miao W, Choi J-P, Bard AJ. Electrogenerated chemiluminescence 69. The tris(2,2′-bipyridine)ruthenium(II), (Ru(bpy)3 2+)/tri-n-propylamine (TPrA) system revisited. A new route involving TPrA•+ cation radicals. J Am Chem Soc. 2002;124:14478–85.CrossRefGoogle Scholar
  16. 16.
    Hvastkovs EG, So M, Krishnan S, Bajrami B, Tarun M, Jansson I, et al. Electrochemiluminescent arrays for cytochrome P450-activated genotoxicity screening. DNA damage from benzo[a]pyrene metabolites. Anal Chem. 2007;79:1897–906.CrossRefGoogle Scholar
  17. 17.
    Sardesai NP, Barron JC, Rusling JF. Carbon nanotube microwell array for sensitive electrochemiluminescent detection of cancer biomarker proteins. Anal Chem. 2011;83:6698–703.CrossRefGoogle Scholar
  18. 18.
    Sardesai N, Pan S, Rusling J. Electrochemiluminescent immunosensor for detection of protein cancer biomarkers using carbon nanotube forests and [Ru-(bpy)3]2+-doped silica nanoparticles. Chem Commun. 2009: 4968–4970.Google Scholar
  19. 19.
    Rusling JF, Hvastkovs EG, Hulla DO, Schenkman JB. Biochemical applications of ultrathin films of enzymes, polyions and DNA. Chem Commun. 2008. doi: 10.1039/B709121B
  20. 20.
    Deiss F, LaFratta CN, Symer M, Blicharz TM, Sojic N, Walt DR. Multiplexed sandwich immunoassays using electrochemiluminescence imaging resolved at the single bead level. J Am Chem Soc. 2009;131:6088–9.CrossRefGoogle Scholar
  21. 21.
    Penner RG, Hebe MJ, Longin TL, Lewis NS. Fabrication and use of nanometer-sized electrodes in electrochemistry. Science. 1990;250:1118–21.CrossRefGoogle Scholar
  22. 22.
    Smith CP, White HS. Theory of the voltammetric response of electrodes of submicrometer dimensions. Violation of electroneutrality in the presence of excess supporting electrolyte. Anal Chem. 1993;65:3342–53.Google Scholar
  23. 23.
    Dickinson EJ, Compton RG. Diffuse double layer at nanoelectrodes. J Phys Chem Lett. 2009;113:17585–9.CrossRefGoogle Scholar
  24. 24.
    Menon VP, Martin CR. Fabrication and evaluation of nanoelectrode ensembles. Anal Chem. 1995;67:1929–8.CrossRefGoogle Scholar
  25. 25.
    Baker WS, Crooks RM. Independent geometrical and electrochemical characterization of arrays of nanometer-scale electrodes. J Phys Chem B. 1998;102:10041–6.CrossRefGoogle Scholar
  26. 26.
    Ongaro M, Ugo P. Bioelectroanalysis with nanoelectrode ensembles and arrays. Anal Bioanal Chem. 2013;405:3715–29.CrossRefGoogle Scholar
  27. 27.
    Arrigan DWM. Nanoelectrodes, nanoelectrode arrays and their applications. Analyst. 2004;129:1157–65.CrossRefGoogle Scholar
  28. 28.
    Ongaro M, Ugo P. Sensor arrays: arrays of micro- and nanoelectrodes. In: Moretto LM, Kalcher K, editors. Environmental analysis by electrochemical sensors and biosensors, v. 1: fundamentals. New York: Springer; 2014. p. 583–613.Google Scholar
  29. 29.
    Ugo P, Moretto LM, Bellomi S, Menon VP, Martin CR. Ion-exchange voltammetry at polymer film-coated nanoelectrode ensembles. Anal Chem. 1996;68:4160–5.CrossRefGoogle Scholar
  30. 30.
    Moretto LM, Pepe N, Ugo P. Voltammetry of redox analytes at trace concentrations with nanoelectrode ensembles. Talanta. 2004;62:1055–60.CrossRefGoogle Scholar
  31. 31.
    Cao L, Yan PS, Sun KN, Kirk DW. Tailor-made gold brush nanoelectrode ensembles modified with L-cysteine for the detection of daunorubicine. Electrochim Acta. 2008;53:8144–8.CrossRefGoogle Scholar
  32. 32.
    Mardegan A, Scopece P, Lamberti F, Meneghetti M, Moretto LM, Ugo P. Electroanalysis of trace inorganic arsenic with gold nanoelectrode ensembles. Electroanalysis. 2012;24:798–806.CrossRefGoogle Scholar
  33. 33.
    Chen A, Tsao MJ, Chuang JF, Lin C. Electrochemical determination of verapamil with a microchip embedded with gold nanoelectrode ensemble. Electrochim Acta. 2013;89:700–7.CrossRefGoogle Scholar
  34. 34.
    Brunetti B, Ugo P, Moretto LM, Martin CR. Electrochemistry of phenothiazine and methylviologen biosensor electron-transfer mediators at nanoelectrode ensembles. J Electroanal Chem. 2000;491:166–74.CrossRefGoogle Scholar
  35. 35.
    Amatore C, Saveant JM, Tessier DJ. Charge transfer at partially blocked surfaces—a model for the case of microscopic active and inactive sites. J Electroanal Chem. 1983;147:39–51.CrossRefGoogle Scholar
  36. 36.
    Pozzi Mucelli S, Zamuner M, Tormen M, Stanta G, Ugo P. Nanoelectrode ensembles as recognition platform for electrochemical immunosensors. Bioses Bioelectron. 2008;23:1900–3.CrossRefGoogle Scholar
  37. 37.
    Viswanathan S, Rani C, Delerue-Matis C. Ultrasensitive detection of ovarian cancer marker using immunoliposomes and gold nanoelectrodes. Anal Chim Acta. 2012;726:79–8438.CrossRefGoogle Scholar
  38. 38.
    Silvestrini M, Fruk L, Ugo P. Functionalized ensembles of nanoelectrodes as affinity biosensors for DNA hybridization detection. Biosens Bioelectron. 2013;40:265–70.CrossRefGoogle Scholar
  39. 39.
    Lee HJ, Beriet C, Ferrigno R, Girault HH. Cyclic voltammetry at a regular microdisc electrode array. J Electroanal Chem. 2001;502:138–45.CrossRefGoogle Scholar
  40. 40.
    Davies TJ, Compton RG. The cyclic and linear sweep voltammetry of regular arrays of microdisc electrodes: fitting of experimental data. J Electroanal Chem. 2005;585:63–82.CrossRefGoogle Scholar
  41. 41.
    Davies TJ, Ward-Jones S, Banks CE, del Campo FJ, Mas R, Munoz FX, et al. The cyclic and linear sweep voltammetry of regular arrays of microdisc electrodes: fitting of experimental data. J Electroanal Chem. 2005;585:51–62.CrossRefGoogle Scholar
  42. 42.
    Henstridge MC, Compton RG. Mass transport to micro and nanoelectrodes and their arrays: a review. Chem Rec. 2012;12:63–71.CrossRefGoogle Scholar
  43. 43.
    Guo J, Lindner E. Cyclic voltammograms at coplanar and shallow recessed microdisk electrode arrays: guidelines for design and experiment. Anal Chem. 2009;81:130–8.CrossRefGoogle Scholar
  44. 44.
    Amatore C, Oleinick AI, Svir I. Numerical simulation of diffusion processes at recessed disk microelectrode arrays using the quasi-conformal mapping approach. Anal Chem. 2009;81:4397–405.CrossRefGoogle Scholar
  45. 45.
    Oleksii S, Oleinick A, Svir I, Amatore C. Development and validation of an analytical model for predicting chronoamperometric responses of random arrays of micro- and nanodisk electrodes. ChemElectroChem. 2015;2:1279–91.CrossRefGoogle Scholar
  46. 46.
    Bartlet JE, Drew SM, Wightman RM. Electrochemiluminescence at band array electrodes. J Electrochem Soc. 1992;139:70–4.CrossRefGoogle Scholar
  47. 47.
    Fiaccabrino GC, Koudelka-Hep M, Hsueh Y-T, Collins SD, Smith RL. Electrochemiluminescence of Tris(2,2′-bipyridine)ruthenium in water at carbon microelectrodes. Anal Chem. 1998;70:4157–61.CrossRefGoogle Scholar
  48. 48.
    Amatore C, Fosset B, Maness KM, Wightman RM. Theory of electrochemical luminescence at double band electrodes. An examination of “steady-state” diffusion at ultramicroelectrodes. Anal Chem. 1993;65:2311–6.CrossRefGoogle Scholar
  49. 49.
    Chidsey CE, Feldman BJ, Lundgren C, Murray RW. Micrometer-spaced platinum interdigitated array electrode: fabrication, theory, and initial use. Anal Chem. 1986;58:601–7.CrossRefGoogle Scholar
  50. 50.
    Chow K-F, Mavré F, Crooks JA, Chang B-Y, Crooks RM. A large-scale, wireless electrochemical bipolar electrode microarray. J Am Chem Soc. 2009;131:8364–5.CrossRefGoogle Scholar
  51. 51.
    Sentic M, Arbault S, Bouffier L, Manojlovic D, Kuhn A, Sojic N. 3D electrogenerated chemiluminescence: from surface-confined reactions to bulk emission. Chem Sci. 2015;6:4433–7.CrossRefGoogle Scholar
  52. 52.
    Chovin A, Garrigue P, Vinatier P, Sojic N. Development of an ordered array of optoelectrochemical individually readable sensors with submicrometer dimensions: application to remote electrochemiluminescence imaging. Anal Chem. 2004;76:357–64.CrossRefGoogle Scholar
  53. 53.
    Szunerits S, Tam JM, Thouin L, Amatore C, Walt DR. Spatially resolved electrochemiluminescence on an array of electrode tips. Anal Chem. 2003;75:4382–8.CrossRefGoogle Scholar
  54. 54.
    Habtamu HB, Sentic M, Silvestrini M, De Leo L, Not T, Arbault S, et al. A sensitive electrochemiluminescence immunosensor for celiac disease diagnosis based on nanoelectrode ensembles. Anal Chem. 2015;87:12080–7.CrossRefGoogle Scholar
  55. 55.
    Sandison ME, Cooper JM. Nanofabrication of electrode arrays by electron beam and nanoimprint lithographies. Lab Chip. 2006;6:1020–5.CrossRefGoogle Scholar
  56. 56.
    Moretto LM, Tormen M, De Leo M, Carpentiero A, Ugo P. Polycarbonate-based ordered arrays of electrochemical nanoelectrodes obtained by e-beam lithography. Nanotechnology. 2011;22:185305.CrossRefGoogle Scholar
  57. 57.
    Honda K, Yoshimura M, Rao TN, Fujishima A. Electrogenerated chemiluminescence of the ruthenium tris(2,2′)bipyridyl/amines system on a boron-doped diamond electrode. J Phys Chem B. 2003;107:1653–63.CrossRefGoogle Scholar
  58. 58.
    Hondaa K, Yamaguchi Y, Yamanaka Y, Yoshimatsu M, Fukuda Y, Fujishima A. Hydroxyl radical-related electrogenerated chemiluminescence reaction for a ruthenium tris(2,2)bipyridyl/co-reactants system a boron-doped diamond electrodes. Electrochim Acta. 2005;51:588–97.CrossRefGoogle Scholar
  59. 59.
    Xiao L, Streeter I, Wildgoose GG, Compton RG. Fabricating random arrays of boron doped diamond nano-disc electrodes: towards achieving maximum faradaic current with minimum capacitive charging. Sensors Actuators B Chem. 2008;133:18–127.CrossRefGoogle Scholar
  60. 60.
    Hees J, Hoffmann R, Kriele A, Smirnov W, Obloh H, Glorer K, et al. Nanocrystalline diamond nanoelectrode arrays and ensembles. ACS Nano. 2011;5:3339–46.CrossRefGoogle Scholar
  61. 61.
    Virgilio F, Prasciolu M, Ugo P, Tormen M. Development of electrochemical biosensors by e-beam lithography for medical diagnostics. Microelectron Eng. 2013;111:320–4.CrossRefGoogle Scholar
  62. 62.
    Godino N, Borrisé X, Muñoz FX, del Campo FJ, Compton RG. Mass transport to nanoelectrode arrays and limitations of the diffusion domain approach: theory and experiment. J Phys Chem C. 2009;113:11119–25.CrossRefGoogle Scholar
  63. 63.
    Zoski CG, Wijesinghe M. Electrochemistry at ultramicroelectrode arrays and nanoelectrode ensembles of macro- and ultramicroelectrode dimensions. Isr J Chem. 2010;50:347–59.CrossRefGoogle Scholar
  64. 64.
    Fernandez JL, Wijesinghe M, Zoski CG. Theory and experiments for voltammetric and SECM investigations and application to ORR electrocatalysis at nanoelectrode ensembles of ultramicroelectrode dimensions. Anal Chem. 2015;87:1066–74.CrossRefGoogle Scholar
  65. 65.
    Bowling RJ, McCreery RL, Pharr CM, Engstrom RC. Observation of kinetic heterogeneity on highly ordered pyrolytic graphite using electrogenerated chemiluminescence. Anal Chem. 1989;61:2763–6.CrossRefGoogle Scholar
  66. 66.
    Engstrom RC, Pharr CM, Koppang MD. Visualization of the edge effect with electrogenerated chemiluminescence. J Electroanal Chem. 1987;221:251–5.CrossRefGoogle Scholar
  67. 67.
    Pharr CM, Engstrom RC, Klancke J, Unzelman PL. Determination of microscopic electrode kinetics with electrogenerated chemiluminescence imaging. Electroanalysis. 1990;2:217–21.CrossRefGoogle Scholar
  68. 68.
    Kanoufi F, Zu Y, Bard AJ. Homogeneous oxidation of trialkylamines by metal complexes and its impact on electrogenerated chemiluminescence in the trialkylamine/Ru(bpy)3 2+ system. J Phys Chem B. 2001;105:210–6.CrossRefGoogle Scholar
  69. 69.
    Klymenko OV, Svir I, Amatore C. A new approach for the simulation of electrochemiluminescence (ECL). ChemPhysChem. 2013;14:2237–50.CrossRefGoogle Scholar
  70. 70.
    Zu Y, Bard AJ. Electrogenerated chemiluminescence. 66. The role of direct coreactant oxidation in the ruthenium tris(2,2′)bipyridyl/tripropylamine system and the effect of halide ions on the emission intensity. Anal Chem. 2000;72:3223–32.CrossRefGoogle Scholar
  71. 71.
    Zu Y, Ding Z, Zhou J, Lee Y, Bard AJ. Scanning optical microscopy with an electrogenerated chemiluminescent light source at a nanometer tip. Anal Chem. 2001;73:2153–6.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Milica Sentic
    • 1
    • 5
  • Francesca Virgilio
    • 2
    • 4
  • Alessandra Zanut
    • 2
    • 4
  • Dragan Manojlovic
    • 5
  • Stéphane Arbault
    • 1
  • Massimo Tormen
    • 2
  • Neso Sojic
    • 1
  • Paolo Ugo
    • 3
    Email author
  1. 1.Groupe NanoSystéms Analytiques, Institut des Sciences Moléculaires, CNRS UMR 5255University of BordeauxPessacFrance
  2. 2.TASC LaboratoryIOM-CNRBasovizza-TriesteItaly
  3. 3.Department of Molecular Sciences and NanosystemsUniversity Ca’ Foscari of VeniceVeniceItaly
  4. 4.University of TriesteTriesteItaly
  5. 5.Faculty of ChemistryUniversity of BelgradeBelgradeSerbia

Personalised recommendations