Analytical and Bioanalytical Chemistry

, Volume 408, Issue 15, pp 4073–4082 | Cite as

Ageing of resin from Pinus species assessed by infrared spectroscopy

  • Victòria Beltran
  • Nati Salvadó
  • Salvador Butí
  • Trinitat Pradell
Research Paper


Resins obtained from Pinus genus species have been widely used in very different fields throughout history. As soon as the resins are secreted, molecular changes start altering their chemical, mechanical and optical properties. The ageing processes are complex, and the chemical and structural changes associated with resin degradation are not yet fully known. Many questions still remain open, for instance changes happening in pimaranes, one of the two diterpenoid constituents of the resin. A systematic study of the ageing process of Pinus resins is done through Fourier transform infrared spectroscopy (FTIR) using chemical standards and complementing the obtained results with gas chromatography coupled to mass spectrometry (GC/MS) analysis when necessary. Moreover, long-term degradation processes are also investigated through the analysis of a selection of dated historical resins. This study overcomes the limitations of GC/MS and brings new information about the reactions and interactions between molecules during Pinus resin ageing processes. It also provides information about which bonds are affected and unaffected, and these can be used as specific markers of the degradation and of the resins themselves.

Graphical Abstract

Changes in the IR spectral features due to the Pinus resin ageing processes


Diterpenic resin IR spectroscopy Pinus resin Ageing Abietanes Pimaranes 



We acknowledge the financial support received for the development of this study from MINECO (Spain), grant MAT2013-41127-R and Generalitat de Catalunya, grant 2014SGR-581.

We would like to thank the Centre de Restauració de Bens Mobles de Catalunya (CRBMC) for their help with the chromatographic analysis and for supplying the artwork samples. Also we would like to thank David Bertran Chavarria, curator of Jardí Botànic de Barcelona, for supplying the fresh resin samples and the Economic Botany Collection of the Royal Botanic Gardens, Kew, in London, for supplying dated ancient resins.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Richardson DM. Ecology and biogeography of Pinus. Cambridge: Cambridge University Press; 2000.Google Scholar
  2. 2.
    Belgacem MN, Gandini A. Monomers, polymers and composites from renewable resources. Oxford: Elsevier; 2008.Google Scholar
  3. 3.
    Fiebach K, Grimm D. Resins, natural. In: Ullmann’s encyclopedia of industrial chemistry. 7th edn. Weinheim: Wiley; 2007.Google Scholar
  4. 4.
    Langenheim JH. Plant resins: chemistry, evolution, ecology, and ethnobotany. Cambridge: Timber; 2003.Google Scholar
  5. 5.
    Mills JS, White R. Organic chemistry of museum objects. New York: Butterworth-Heinemann; 1999.Google Scholar
  6. 6.
    Mills JS, White R. Natural resins of art and archaeology their sources, chemistry, and identification. Stud Conserv. 1977;22(1):12–31.Google Scholar
  7. 7.
    Colombini MP, Modugno F. Organic mass spectrometry in art and archaeology. Pisa: Wiley; 2009.CrossRefGoogle Scholar
  8. 8.
    Pastorova II, van der Berg KJ, Boon JJ, Verhoeven JW. J Anal Appl Pyrol. 1997;43:41–57.CrossRefGoogle Scholar
  9. 9.
    Osete-Cortina L, Doménech-Carbó MT, Mateo-Castro R, Gimeno-Adelantado JV, Bosch-Reig F. J Chromatogr A. 2004;1024:187–94.CrossRefGoogle Scholar
  10. 10.
    Berg KJ, Boon JJ, Pastorova II, Spetter LF. J Mass Spectrom. 2000;35(4):512–33.CrossRefGoogle Scholar
  11. 11.
    Steigenberger G, Herm C. Anal Bioanal Chem. 2011;401(6):1771–84.CrossRefGoogle Scholar
  12. 12.
    Abdel-Ghani M, Edwards HGM, Stern B, Janaway R. Spectrochim Acta A. 2009;73:566–75.CrossRefGoogle Scholar
  13. 13.
    Chiavari G, Fabbri D, Prati S. Chromatographia. 2002;55(9–10):611–6.CrossRefGoogle Scholar
  14. 14.
    Osete-Cortina L, Doménech-Carbó MT. J Chromatogr A. 2005;1065(2):265–78.CrossRefGoogle Scholar
  15. 15.
    Anderson KB, Winans RE. Anal Chem. 1991;63:2901–8.CrossRefGoogle Scholar
  16. 16.
    Prati S, Smith S, Chiavari G. Chromatographia. 2004;59:227–31.Google Scholar
  17. 17.
    Osete-Cortina L, Doménech-Carbó MT. J Anal Appl Pyrolysis. 2006;76:144–53.CrossRefGoogle Scholar
  18. 18.
    Derrick MR, Stulik D, Landry JM. Infrared spectroscopy in conservation science. Los Angeles: The Getty Conservation Institute; 1999.Google Scholar
  19. 19.
    Beltran V, Salvadó N, Butí S, Cinque G. Microchem J. 2015;118:115–23.CrossRefGoogle Scholar
  20. 20.
    Font J, Salvadó N, Butí S, Enrich J. Anal Chim Acta. 2007;598(1):119–27.CrossRefGoogle Scholar
  21. 21.
    Bertrand L, Robinet L, Cohen SX, Sandt C, Le Hô AS, Soulier B, et al. Anal Bioanal Chem. 2011;399(9):3025–32.CrossRefGoogle Scholar
  22. 22.
    Robinson N, Evershed RP, Higgs WJ, Jerman K, Eglinton G. Analyst (Cambridge, U K). 1987;112:637–44.CrossRefGoogle Scholar
  23. 23.
    Derrick M. J Am Inst Conserv. 1989;1:43–56.CrossRefGoogle Scholar
  24. 24.
    Derrick M, Stulik DC, Landry JM, Bouffard SP. J Am Inst Conserv. 1992;2:225–36.CrossRefGoogle Scholar
  25. 25.
    Daher C, Paris C, Le Hô A, Bellot-Gurlet L, Échard J. J Raman Spectrosc. 2010;41(11):1494–9.CrossRefGoogle Scholar
  26. 26.
    Brody RH, Edwards HGM, Pollard M. Biopolymers. 2002;67(2):129–41.CrossRefGoogle Scholar
  27. 27.
    Vandenabeele P, Wehling B, Moens L, Edwards H, De Reu M, Van Hooydonk G. Anal Chim Acta. 2000;407:261–74.CrossRefGoogle Scholar
  28. 28.
    Prati S, Sciutto G, Mazzeo R, Torri C, Fabbri D. Anal Bioanal Chem. 2011;399:3081–91.CrossRefGoogle Scholar
  29. 29.
    Doménech-Carbó MT. Anal Chim Acta. 2008;621(2):109–39.CrossRefGoogle Scholar
  30. 30.
    Scalarone D, van der Horst J, Boon JJ, Chiantore O. J Mass Spectrom. 2003;38:607–17.CrossRefGoogle Scholar
  31. 31.
    European Forest Genetic Resources Programme (EUFORGEN). (2015). Accessed 14 Jan 2015.
  32. 32.
    Merrifield MP. Medieval and Renaissance treatises on the arts of painting: original texts with English translations. New York: Dover; 1999.Google Scholar
  33. 33.
    Eastlake CL. Methods and materials of painting of the great schools and masters. New York: Dover; 2001.Google Scholar
  34. 34.
    Smith CS, Hawthorne JG. Mappae Clavicula: a little key to the world of medieval techniques. Philadelphia: American Philosophical Society; 1974.Google Scholar
  35. 35.
    Thornton J. J Am Inst Conserv. 1998;37(1):3–22.Google Scholar
  36. 36.
    Dardes K, Rothe A. The structural conservation of panel paintings: proceedings of a Symposium at the J. Paul Getty Museum, 24–28 April 1995. Los Angeles: Getty Conservation Institute; 1998.Google Scholar
  37. 37.
    Jones R. Carbon with two heteroatoms with at least one carbon-to-heteroatom multiple link, vol 5. In: Katritzky AR, Taylor RJK, editors. Comprehensive organic functional groups transformations II. Cambridge: Elsevier; 2005.Google Scholar
  38. 38.
    Flett M St C. J Chem Soc. 1951;962–7.Google Scholar
  39. 39.
    Bratoz S, Hadzi D, Sheppard N. Spectrochim Acta. 1956;8:249–81.CrossRefGoogle Scholar
  40. 40.
    Bellamy LJ. The infra-red spectra of complex molecules. London: Springer; 1975.CrossRefGoogle Scholar
  41. 41.
    Blout ER, Fields M, Karplus R. J Am Chem Soc. 1948;70(1):194–8.CrossRefGoogle Scholar
  42. 42.
    Hadzi D, Sheppard N. P R Soc A. 1953;216:247–66.CrossRefGoogle Scholar
  43. 43.
    Hadzi D, Pintar M. Spectrochim Acta. 1958;12:162–88.CrossRefGoogle Scholar
  44. 44.
    Lin-Vien D, Colthup NB, Fateley WG, Grasselli JG. The handbook of infrared and Raman characteristic frequencies of organic molecules. London: Academic; 1991.Google Scholar
  45. 45.
    Katritzky AR. Q Rev, Chem Soc. 1959;13:353–73.CrossRefGoogle Scholar
  46. 46.
    Arrabal C, Cortijo M, Fernandez de Simon B, Garcia Vallejo MC, Cadahía E. Biochem Syst Ecol. 2005;33:1007–16.CrossRefGoogle Scholar
  47. 47.
    Arrabal C, Cortijo M, Fernández de Simón B, García-Vallejo MC, Cadahía E. Holzforschung. 2002;56(3):261–6.CrossRefGoogle Scholar
  48. 48.
    Rezzi S, Bighelli A, Castola V, Casanova J. Ind Crop Prod. 2005;21(1):71–9.CrossRefGoogle Scholar
  49. 49.
    Mosini V, Samperi R. Phytochemistry. 1985;24(4):859–61.CrossRefGoogle Scholar
  50. 50.
    Joye Jr NM, Lawrence RV. J Chem Eng Data. 1967;12(2):279–82.CrossRefGoogle Scholar
  51. 51.
    Gref R. Eur J of Forest Pathol. 1987;17(4–5):227–30.CrossRefGoogle Scholar
  52. 52.
    Gören AC, Bilsel G, Öztürk AH, Topçu G. Nat Prod Commun. 2010;11:1729–32.Google Scholar
  53. 53.
    Azémard C, Vieillescazes C, Ménager M. Microchem J. 2014;112:137–49.CrossRefGoogle Scholar
  54. 54.
    Doménech-Carbó MT, Osete-Cortina L, de la Cruz CJ, Bolívar-Galiano F, Romero-Noguera J, Fernández-Vivas MA, et al. Anal Bioanal Chem. 2006;385(7):1265–80.CrossRefGoogle Scholar
  55. 55.
    Romero-Noguera J, Bolívar-Galiano FC, Ramos-López JM, Fernández-Vivas MA, Martín-Sánchez I. Biodeteriorat Biodegrad. 2008;62(4):427–33.CrossRefGoogle Scholar
  56. 56.
    Scalarone D, Lazzari M, Chiantore O. J Anal Appl Pyrol. 2002;64:345–61.CrossRefGoogle Scholar
  57. 57.
    Ménager M, Azémard C, Vieillescazes C. Microchem J. 2014;114:32–41.CrossRefGoogle Scholar
  58. 58.
    Ménager M, Perraud A, Vieillescazes C. Archéosciences. 2012;37:7–17.Google Scholar
  59. 59.
    Tirat S, Deganod I, Echard JP, Lattuati-Derieux A, Lluveras-Tenorio A, Marie A, et al. Microchem J. 2016;126:200–13.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Victòria Beltran
    • 1
  • Nati Salvadó
    • 1
  • Salvador Butí
    • 1
  • Trinitat Pradell
    • 2
  1. 1.Dpt. d’Enginyeria Química. EPSEVGUniversitat Politècnica de CatalunyaVilanova i la GeltrúSpain
  2. 2.Dpt. FísicaUniversitat Politècnica de CatalunyaCastelldefelsSpain

Personalised recommendations