Analytical and Bioanalytical Chemistry

, Volume 408, Issue 15, pp 4035–4041 | Cite as

Single particle analysis of herpes simplex virus: comparing the dimensions of one and the same virions via atomic force and scanning electron microscopy

  • Evelyn Kämmer
  • Isabell Götz
  • Thomas Bocklitz
  • Stephan Stöckel
  • Andrea Dellith
  • Dana Cialla-May
  • Karina Weber
  • Roland Zell
  • Jan Dellith
  • Volker Deckert
  • Jürgen Popp
Research Paper

Abstract

Currently, two types of direct methods to characterize and identify single virions are available: electron microscopy (EM) and scanning probe techniques, especially atomic force microscopy (AFM). AFM in particular provides morphologic information even of the ultrastructure of viral specimens without the need to cultivate the virus and to invasively alter the sample prior to the measurements. Thus, AFM can play a critical role as a frontline method in diagnostic virology. Interestingly, varying morphological parameters for virions of the same type can be found in the literature, depending on whether AFM or EM was employed and according to the respective experimental conditions during the AFM measurements. Here, an inter-methodological proof of principle is presented, in which the same single virions of herpes simplex virus 1 were probed by AFM previously and after they were measured by scanning electron microscopy (SEM). Sophisticated chemometric analyses then allowed a calculation of morphological parameters of the ensemble of single virions and a comparison thereof. A distinct decrease in the virions’ dimensions was found during as well as after the SEM analyses and could be attributed to the sample preparation for the SEM measurements.

Graphical abstract

The herpes simplex virus is investigated with scanning electron and atomic force microscopy in view of varying dimensions

Keywords

Atomic force microscopy Scanning electron microscopy Herpes simplex virus Image analysis 

Notes

Acknowledgments

Financial support of the research from the EU via the project “HemoSpec” (FP 7, CN 611682), from the Thüringer Aufbaubank under the support codes 2011FE9051 and 2011SE9048 (“FastVirus”) as well as from COST Action MP1302 Nanospectroscopy is gratefully acknowledged. We thank Steffen Trautmann for creating the primary scheme of viruses for the table of content figure/graphical abstract.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

216_2016_9492_MOESM1_ESM.pdf (409 kb)
ESM 1 (PDF 408 kb)

References

  1. 1.
    Gentile M, Gelderblom HR. Electron microscopy in rapid viral diagnosis: an update. New Microbiol. 2014;37:403–22.Google Scholar
  2. 2.
    Goldsmith CS. Morphologic differentiation of viruses beyond the family level. Viruses Basel. 2014;6:4902–13.CrossRefGoogle Scholar
  3. 3.
    Kuznetsov YG, McPherson A. Atomic force microscopy in imaging of viruses and virus-infected cells. Microbiol Mol Biol Rev. 2011;75:268–85.CrossRefGoogle Scholar
  4. 4.
    Plomp M, Rice MK, Wagner EK, McPherson A, Malkin AJ. Rapid visualization at high resolution of pathogens by atomic force microscopy—structural studies of herpes simplex virus-1. Am J Pathol. 2002;160:1959–66.CrossRefGoogle Scholar
  5. 5.
    Malkin AJ, Kuznetsov YG, McPherson A. Viral capsomere structure, surface processes and growth kinetics in the crystallization of macromolecular crystals visualized by in situ atomic force microscopy. J Cryst Growth. 2001;232:173–83.CrossRefGoogle Scholar
  6. 6.
    Moloney M, McDonnell L, O’Shea H. Immobilisation of Semliki Forest virus for atomic force microscopy. Ultramicroscopy. 2002;91:275–9.CrossRefGoogle Scholar
  7. 7.
    Dubrovin EV, Voloshin AG, Kraevsky SV, Ignatyuk TE, Abramchuk SS, Yaminsky IV, et al. Atomic force microscopy investigation of phage infection of bacteria. Langmuir. 2008;24:13068–74.CrossRefGoogle Scholar
  8. 8.
    Hermann P, Hermelink A, Lausch V, Holland G, Möller L, Bannert N, et al. Evaluation of tip-enhanced Raman spectroscopy for characterizing different virus strains. Analyst. 2011;136:1148–52.CrossRefGoogle Scholar
  9. 9.
    Liu CH, Horng JT, Chang JS, Hsieh CF, Tseng YC, Lin SM. Localization and force analysis at the single virus particle level using atomic force microscopy. Biochem Biophys Res Commun. 2012;417:109–15.CrossRefGoogle Scholar
  10. 10.
    Martinez-Martin D, Carrasco C, Hernando-Perez M, de Pablo PJ, Gomez-Herrero J, Perez R, et al. Resolving structure and mechanical properties at the nanoscale of viruses with frequency modulation atomic force microscopy. PLoS ONE. 2012;7:e30204.CrossRefGoogle Scholar
  11. 11.
    Havlik M, Marchetti-Deschmann M, Friedbacher G, Winkler W, Messner P, Perez-Burgos L, et al. Comprehensive size-determination of whole virus vaccine particles using gas-phase electrophoretic mobility macromolecular analyzer, atomic force microscopy, and transmission electron microscopy. Anal Chem. 2015;87:8657–64.CrossRefGoogle Scholar
  12. 12.
    Bocklitz T, Kämmer E, Stöckel S, Cialla-May D, Weber K, Zell R, et al. Single virus detection by means of atomic force microscopy in combination with advanced image analysis. J Struct Biol. 2014;188:30–8.CrossRefGoogle Scholar
  13. 13.
    Development Core Team R. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2008.Google Scholar
  14. 14.
    Fortran code by H. Akima, R port by Albrecht Gebhardt aspline function by Thomas Petzoldt enhancements and corrections by Martin Maechler. 2009. akima: Interpolation of irregularly spaced data, R package version 0.5-4.Google Scholar
  15. 15.
    Rajwa B, Dundar M, Irvine A, Dang T (2013) IM: orthogonal moment analysis, r package version 1.0.Google Scholar
  16. 16.
    Venables WN, Ripley BD. Modern applied statistics with S. 4th ed. New York: Springer; 2002.CrossRefGoogle Scholar
  17. 17.
    Revolution Analytics, Weston S (2013) Foreach: Foreach looping construct for R. R package version 1.4.1, 2013.Google Scholar
  18. 18.
    Wildy P, Russell WC, Horne RW. The morphology of herpes virus. Virology. 1960;12:204–22.CrossRefGoogle Scholar
  19. 19.
    Chiu W, Rixon FJ. High resolution structural studies of complex icosahedral viruses: a brief overview. Virus Res. 2001;82:9–17.CrossRefGoogle Scholar
  20. 20.
    Grünewald K, Desai P, Winkler DC, Heymann JB, Belnap DM, Baumeister W, et al. Three-dimensional structure of herpes simplex virus from cryo-electron tomography. Science. 2003;302:1396–8.CrossRefGoogle Scholar
  21. 21.
    Newcomb WW, Brown JC. Structure of the herpes simplex virus capsid: effects of extraction with guanidine hydrochloride and partial reconstitution of extracted capsids. J Virol. 1991;65:613–20.Google Scholar
  22. 22.
    Zhou ZH, Dougherty M, Jakana J, He J, Rixon FJ, Chiu W. Seeing the herpesvirus capsid at 8.5 Å. Science. 2000;288:877–80.CrossRefGoogle Scholar
  23. 23.
    Brown JC, Newcomb WW. Herpesvirus capsid assembly: insights from structural analysis. Curr Opin Virol. 2011;1:142–9.CrossRefGoogle Scholar
  24. 24.
    Heldwein EE, Krummenacher C. Entry of herpesviruses into mammalian cells. Cell Mol Life Sci. 2008;65:1653–68.CrossRefGoogle Scholar
  25. 25.
    Schrag JD, Prasad BVV, Rixon FJ, Chiu W. Three-dimensional structure of the HSV1 nucleocapsid. Cell. 1989;56:651–60.CrossRefGoogle Scholar
  26. 26.
    Roos WH, Radtke K, Kniesmeijer E, Geertsema H, Sodeik B, Wuite GJL. Scaffold expulsion and genome packaging trigger stabilization of herpes simplex virus capsids. Proc Natl Acad Sci U S A. 2009;106:9673–8.CrossRefGoogle Scholar
  27. 27.
    Wu N, Kong Y, Zu YG, Fu YJ, Liu ZG, Meng RH, et al. Activity investigation of pinostrobin towards herpes simplex virus-1 as determined by atomic force microscopy. Phytomedicine. 2011;18:110–8.CrossRefGoogle Scholar
  28. 28.
    MacCuspie RI, Nuraje N, Lee SY, Runge A, Matsui H. Comparison of electrical properties of viruses studied by AC capacitance scanning probe microscopy. J Am Chem Soc. 2008;130:887–91.CrossRefGoogle Scholar
  29. 29.
    Ramirez-Aguilar KA, Rowlen KL. Tip characterization from AFM images of nanometric spherical particles. Langmuir. 1998;14:2562–6.CrossRefGoogle Scholar
  30. 30.
    de Pablo PJ. Atomic force microscopy of viruses. In: Mateu MG, editor. Structure and physics of viruses, vol. 68. Netherlands: Springer; 2013. p. 247–71.CrossRefGoogle Scholar
  31. 31.
    Ukraintsev E, Kromka A, Kozak H, Remeš Z, Rezek B. Artifacts in atomic force microscopy of biological samples. In: Frewin C, editor. Atomic force microscopy investigations into biology—from cell to protein. Rijeka: InTech; 2012.Google Scholar
  32. 32.
    Chen SW, Odorico M, Meillan M, Vellutini L, Teulon J, Parot P, et al. Nanoscale structural features determined by AFM for single virus particles. Nanoscale. 2013;5:10877–86.CrossRefGoogle Scholar
  33. 33.
    Kuznetsov YG, Chang S-C, McPherson A. Investigation of bacteriophage T4 by atomic force microscopy. Bacteriophage. 2011;1:165–73.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Evelyn Kämmer
    • 1
    • 2
    • 3
  • Isabell Götz
    • 2
    • 3
  • Thomas Bocklitz
    • 1
    • 2
    • 3
  • Stephan Stöckel
    • 1
    • 3
  • Andrea Dellith
    • 2
  • Dana Cialla-May
    • 1
    • 2
    • 3
  • Karina Weber
    • 1
    • 2
    • 3
  • Roland Zell
    • 4
  • Jan Dellith
    • 2
  • Volker Deckert
    • 1
    • 2
    • 3
  • Jürgen Popp
    • 1
    • 2
    • 3
  1. 1.Institute of Physical Chemistry and Abbe Center of PhotonicsFriedrich Schiller University JenaJenaGermany
  2. 2.Leibniz Institute of Photonic Technology (IPHT)JenaGermany
  3. 3.InfectoGnostics Forschungscampus Jena e.V., Zentrum für Angewandte ForschungJenaGermany
  4. 4.Department of Virology and Antiviral Therapy, Jena University HospitalFriedrich Schiller University JenaJenaGermany

Personalised recommendations