Analytical and Bioanalytical Chemistry

, Volume 408, Issue 30, pp 8583–8591 | Cite as

A primerless molecular diagnostic: phosphorothioated-terminal hairpin formation and self-priming extension (PS-THSP)

Paper in Forefront
Part of the following topical collections:
  1. Isothermal Nucleic Acid Amplification in Bioanalysis

Abstract

There are various ways that priming can occur in nucleic acid amplification reactions. While most reactions rely on a primer to initiate amplification, a mechanism for DNA amplification has been developed in which hairpin sequences at the 3’ terminus of a single-stranded oligonucleotide fold on themselves to initiate priming. Unfortunately, this method is less useful for diagnostic applications because the self-folding efficiency is low and only works over a narrow range of reaction temperatures. In order to adapt this strategy for analytical applications we have developed a variant that we term phosphorothioated-terminal hairpin formation and self-priming extension (PS-THSP). In PS-THSP a phosphorothioate (PS) modification is incorporated into the DNA backbone, leading to a reduction in the thermal stability of dsDNA and increased self-folding of terminal hairpins. By optimizing the number of PS linkages that are included in the initial template, we greatly increased self-folding efficiency and the range of reaction temperatures, ultimately achieving a detection limit of 1 pM. This improved method was readily adapted to the detection of single nucleotide polymorphisms and to the detection of non-nucleic acid analytes, such as alkaline phosphatase, which was quantitatively detected at a limit of 0.05 mU/mL, approximately 10-fold better than commercial assays.

Graphical abstract

Efficient self-folding by phosphorothioate (PS) modification

Keywords

PS-THSP Self-folding Isothermal amplification Phosphorothioate 

Supplementary material

216_2016_9479_MOESM1_ESM.pdf (592 kb)
ESM 1(PDF 591 kb)

References

  1. 1.
    Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol. 1986;51(1):263–73.CrossRefGoogle Scholar
  2. 2.
    Saiki RK, Scharf S, Faloona F, et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985;230:1350–4. doi:10.1126/science.2999980.CrossRefGoogle Scholar
  3. 3.
    Compton J. Nucleic acid sequence-based amplification. Nature. 1991;350:91–2. doi:10.1038/350091a0.CrossRefGoogle Scholar
  4. 4.
    Kurn N, Chen P, Heath JD, Kopf-Sill A, Stephens KM, Wang S. Novel isothermal, linear nucleic acid amplification systems for highly multiplexed applications. Clin Chem. 2005;51:1973–81. doi:10.1373/clinchem.2005.053694.CrossRefGoogle Scholar
  5. 5.
    Mukai H, Uemori T, Takeda O, et al. Highly efficient isothermal DNA amplification system using three elements of 5’-DNA-RNA-3’ chimeric primers, RNaseH and strand-displacing DNA polymerase. J Biochem (Tokyo). 2007;142:273–81. doi:10.1093/jb/mvm138.CrossRefGoogle Scholar
  6. 6.
    Walker GT, Fraiser MS, Schram JL, Little MC, Nadeau JG, Malinowski DP. Strand displacement amplification–an isothermal, in vitro DNA amplification technique. Nucleic Acids Res. 1992;20:1691–6.CrossRefGoogle Scholar
  7. 7.
    Walker GT, Little MC, Nadeau JG, Shank DD. Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system. Proc Natl Acad Sci. 1992;89:392–6.CrossRefGoogle Scholar
  8. 8.
    Vincent M, Xu Y, Kong H. Helicase-dependent isothermal DNA amplification. EMBO Rep. 2004;5:795–800. doi:10.1038/sj.embor.7400200.CrossRefGoogle Scholar
  9. 9.
    Piepenburg O, Williams CH, Stemple DL, Armes NA. DNA detection using recombination proteins. PLoS Biol. 2006;4, e204. doi:10.1371/journal.pbio.0040204.CrossRefGoogle Scholar
  10. 10.
    Jung C, Chung JW, Kim UO, Kim MH, Park HG. Isothermal target and signaling probe amplification method, based on a combination of an isothermal chain amplification technique and a fluorescence resonance energy transfer cycling probe technology. Anal Chem. 2010;82:5937–43. doi:10.1021/ac100606m.CrossRefGoogle Scholar
  11. 11.
    Fire A, Xu SQ. Rolling replication of short DNA circles. Proc Natl Acad Sci. 1995;92:4641–5.CrossRefGoogle Scholar
  12. 12.
    Lizardi PM, Huang X, Zhu Z, Bray-Ward P, Thomas DC, Ward DC. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat Genet. 1998;19:225–32. doi:10.1038/898.CrossRefGoogle Scholar
  13. 13.
    Notomi T, Okayama H, Masubuchi H, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28, e63. doi:10.1093/nar/28.12.e63.CrossRefGoogle Scholar
  14. 14.
    Mitani Y, Lezhava A, Kawai Y, et al. Rapid SNP diagnostics using asymmetric isothermal amplification and a new mismatch-suppression technology. Nat Methods. 2007;4:257–62. doi:10.1038/nmeth1007.CrossRefGoogle Scholar
  15. 15.
    Kato T, Liang X, Asanuma H. Model of elongation of short DNA sequence by thermophilic DNA polymerase under isothermal conditions. Biochemistry (Mosc). 2012;51:7846–53. doi:10.1021/bi3010413.CrossRefGoogle Scholar
  16. 16.
    Nagamine K, Hase T, Notomi T. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol Cell Probes. 2002;16:223–9.CrossRefGoogle Scholar
  17. 17.
    Chen S, Ge B. Development of a toxR-based loop-mediated isothermal amplification assay for detecting Vibrio parahaemolyticus. BMC Microbiol. 2010;10:41. doi:10.1186/1471-2180-10-41.CrossRefGoogle Scholar
  18. 18.
    Boczkowska M, Guga P, Stec WJ. Stereodefined phosphorothioate analogues of DNA: relative thermodynamic stability of the model PS-DNA/DNA and PS-DNA/RNA complexes. Biochemistry (Mosc). 2002;41:12483–7. doi:10.1021/bi026225z.CrossRefGoogle Scholar
  19. 19.
    LaPlanche LA, James TL, Powell C, et al. Phosphorothioate-modified oligodeoxyribonucleotides. III. NMR and UV spectroscopic studies of the Rp-Rp, Sp-Sp, and Rp-Sp duplexes, [d(GGSAATTCC)]2, derived from diastereomeric O-ethyl phosphorothioates. Nucleic Acids Res. 1986;14:9081–93.CrossRefGoogle Scholar
  20. 20.
    Eckstein F. Nucleoside phosphorothioates. Annu Rev Biochem. 1985;54:367–402. doi:10.1146/annurev.bi.54.070185.002055.CrossRefGoogle Scholar
  21. 21.
    Stein CA, Cheng YC. Antisense oligonucleotides as therapeutic agents–is the bullet really magical? Science. 1993;261:1004–12. doi:10.1126/science.8351515.CrossRefGoogle Scholar
  22. 22.
    Jose D, Datta K, Johnson NP, von Hippel PH. Spectroscopic studies of position-specific DNA “breathing” fluctuations at replication forks and primer-template junctions. Proc Natl Acad Sci. 2009;106:4231–6. doi:10.1073/pnas.0900803106.CrossRefGoogle Scholar
  23. 23.
    Bruse SE, Moreau MP, Azaro MA, Zimmerman R, Hoffman A, Brzustowicz LM. Improvements to bead based oligonucleotide ligation SNP genotyping assays. BioTechniques. 2008;45:559–71. doi:10.2144/000112960.CrossRefGoogle Scholar
  24. 24.
    Conze T, Shetye A, Tanaka Y, et al. Analysis of genes, transcripts, and proteins via DNA ligation. Annu Rev Anal Chem (Palo Alto, Calif). 2009;2:215–39. doi:10.1146/annurev-anchem-060908-155239.CrossRefGoogle Scholar
  25. 25.
    Hardenbol P, Banér J, Jain M, et al. Multiplexed genotyping with sequence-tagged molecular inversion probes. Nat Biotechnol. 2003;21:673–8. doi:10.1038/nbt821.CrossRefGoogle Scholar
  26. 26.
    Qi X, Bakht S, Devos KM, Gale MD, Osbourn A. L-RCA (ligation-rolling circle amplification): a general method for genotyping of single nucleotide polymorphisms (SNPs). Nucleic Acids Res. 2001;29, e116.CrossRefGoogle Scholar
  27. 27.
    Shin GW, Chung B, Jung GY, Jung GY. Multiplex ligase-based genotyping methods combined with CE. Electrophoresis. 2014;35:1004–16. doi:10.1002/elps.201300361.CrossRefGoogle Scholar
  28. 28.
    Barany F. Genetic disease detection and DNA amplification using cloned thermostable ligase. Proc Natl Acad Sci. 1991;88:189–93.CrossRefGoogle Scholar
  29. 29.
    Barany F. The ligase chain reaction in a PCR world. Genome Res. 1991;1:5–16. doi:10.1101/gr.1.1.5.CrossRefGoogle Scholar
  30. 30.
    Zhang S, Wu Z, Shen G, Yu R. A label-free strategy for SNP detection with high fidelity and sensitivity based on ligation-rolling circle amplification and intercalating of methylene blue. Biosens Bioelectron. 2009;24:3201–7. doi:10.1016/j.bios.2009.03.012.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute for Cellular and Molecular Biology, Department of Chemistry and BiochemistryUniversity of Texas at AustinAustinUSA

Personalised recommendations