Advertisement

Analytical and Bioanalytical Chemistry

, Volume 408, Issue 30, pp 8731–8746 | Cite as

Layered-nanomaterial-amplified chemiluminescence systems and their analytical applications

  • Jinpan Zhong
  • Zhiqin Yuan
  • Chao LuEmail author
Review
Part of the following topical collections:
  1. Highlights of Analytical Chemical Luminescence

Abstract

Layered nanomaterial has become a popular hierarchical material for amplifying chemiluminescence (CL) in recent years, mainly because of its ease of preparation and modification, large specific surface area, and high catalytic activity. In this review, we mainly discuss layered-nanomaterial-amplified CL systems based on graphene and its derivatives, layered double hydroxides, and clay. Detection mechanisms and strategies of layered-nanomaterial-amplified CL systems are provided to show the basic concepts for designing sensitive and selective sensing systems. Strategies for expanding the applications of layered-nanomaterial-amplified CL systems by combination with surfactants, quantum dots, organic dyes, and nanoparticles are introduced for the analysis of various analytes in real samples. The challenges and future trends of layered-nanomaterial-amplified CL systems are discussed at the end of the review.

Graphical Abstract

Schematic illustration of layered nanomaterial amplified chemiluminescence

Keywords

Layered nanomaterial Chemiluminescence Graphene Layered double hydroxide Clay 

Notes

Acknowledgments

This work was supported by the National Basic Research Program of China (973 Program, 2014CB932103), the National Natural Science Foundation of China (21375006 and 21575010), and the Innovation and Promotion Project of Beijing University of Chemical Technology.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. 1.
    Wang Q, O’Hare D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem Rev. 2012;112:4124–55.CrossRefGoogle Scholar
  2. 2.
    Xu MS, Liang T, Shi MM, Chen HZ. Graphene-like two-dimensional materials. Chem Rev. 2013;113:3766–98.CrossRefGoogle Scholar
  3. 3.
    Bhattacharyya KG, Gupta SS. Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review. Adv Colloid Interface Sci. 2008;140:114–31.CrossRefGoogle Scholar
  4. 4.
    Zhu YW, Murali S, Cai WW, Li XS, Suk JW, Potts JR, et al. Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater. 2010;22:3906–24.CrossRefGoogle Scholar
  5. 5.
    Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, et al. Preparation and characterization of graphene oxide paper. Nature. 2007;448:457–60.CrossRefGoogle Scholar
  6. 6.
    Allen MJ, Tung VC, Kaner RB. Honeycomb carbon: a review of graphene. Chem Rev. 2010;110:132–45.CrossRefGoogle Scholar
  7. 7.
    Huang X, Qi XY, Boey F, Zhang H. Graphene-based composites. Chem Soc Rev. 2012;41:666–86.CrossRefGoogle Scholar
  8. 8.
    Roth WJ, Gil B, Makowski W, Marszalek B, Eliášová P. Layer like porous materials with hierarchical structure. Chem Soc Rev. 2015. doi: 10.1039/c5cs00508f.Google Scholar
  9. 9.
    Fan GL, Li F, Evans DG, Duan X. Catalytic applications of layered double hydroxides: recent advances and perspectives. Chem Soc Rev. 2014;43:7040–66.CrossRefGoogle Scholar
  10. 10.
    Lin JM, Yamada M. Microheterogeneous systems of micelles and microemulsions as reaction media in chemiluminescent analysis. Trends Anal Chem. 2003;22:99–107.CrossRefGoogle Scholar
  11. 11.
    Lu C, Song GQ, Lin JM. Reactive oxygen species and their chemiluminescence-detection methods. Trends Anal Chem. 2006;25:985–95.CrossRefGoogle Scholar
  12. 12.
    Seidel M, Niessner R. Chemiluminescence microarrays in analytical chemistry: a critical review. Anal Bioanal Chem. 2014;406:5589–612.CrossRefGoogle Scholar
  13. 13.
    Zhang LJ, Rong WQ, Lu C, Zhao LX. Organo-modified layered double hydroxide-catalyzed Fenton-like ultra-weak chemiluminescence for specific sensing of vitamin B12 in egg yolks. Talanta. 2014;129:126–31.CrossRefGoogle Scholar
  14. 14.
    Guan WJ, Zhou WJ, Han DM, Zhang MC, Lu C, Lin JM. One-step enrichment and chemiluminescence detection of sodium dodecyl benzene sulfonate in river water using Mg-Al-carbonate layered double hydroxides. Talanta. 2014;120:268–73.CrossRefGoogle Scholar
  15. 15.
    Lee JS, Joung HA, Kim MG, Park CB. Graphene-based chemiluminescence resonance energy transfer for homogeneous immunoassay. ACS Nano. 2012;6:2978–83.CrossRefGoogle Scholar
  16. 16.
    Bi S, Xiu B, Ye YJ, Dong Y. Target-catalyzed DNA four-way junctions for CRET imaging of microRNA, concatenated logic operations, and self-assembly of DNA nanohydrogels for targeted drug delivery. ACS Appl Mater Interfaces. 2015;7:23310–9.CrossRefGoogle Scholar
  17. 17.
    Shen W, Yu YQ, Shu JN, Cui H. A graphene-based composite material noncovalently functionalized with a chemiluminescence reagent: synthesis and intrinsic chemiluminescence activity. Chem Commun. 2012;48:2894–6.CrossRefGoogle Scholar
  18. 18.
    Liu DQ, Huang GM, Yu YQ, He Y, Zhang HL, Cui H. N-(Aminobutyl)-N-(ethylisoluminol) and hemin dual-functionalized graphene hybrids with high chemiluminescence. Chem Commun. 2013;49:9794–6.CrossRefGoogle Scholar
  19. 19.
    Roda A, Guardigli M. Analytical chemiluminescence and bioluminescence: latest achievements and new horizons. Anal Bioanal Chem. 2012;402:69–76.CrossRefGoogle Scholar
  20. 20.
    Adam W, Kazakov DV, Kazakov VP. Singlet-oxygen chemiluminescence in peroxide reactions. Chem Rev. 2005;105:3371–87.CrossRefGoogle Scholar
  21. 21.
    Yang L, Zhang RL, Liu BH, Wang JQ, Wang SH, Han MY, et al. π-Conjugated carbon radicals at graphene oxide to initiate ultrastrong chemiluminescence. Angew Chem Int Ed. 2014;53:10109–13.CrossRefGoogle Scholar
  22. 22.
    Dong SC, Liu F, Lu C. Organo-modified hydrotalcite-quantum dot nanocomposites as a novel chemiluminescence resonance energy transfer probe. Anal Chem. 2013;85:3363–8.CrossRefGoogle Scholar
  23. 23.
    Dong SC, Guan WJ, Lu C. Quantum dots in organo-modified layered double hydroxide framework-improved peroxynitrous acid chemiluminescence for nitrite sensing. Sensors Actuators B. 2013;181:65–70.CrossRefGoogle Scholar
  24. 24.
    Liu Q, Zhou QF, Jiang GB. Nanomaterials for analysis and monitoring of emerging chemical pollutants. Trends Anal Chem. 2014;58.Google Scholar
  25. 25.
    Liu X, Li Y, Xu XH, Li P, Nie Z, Huang Y, et al. Nanomaterial-based tools for protein kinase bioanalysis. Trends Anal Chem. 2014;58:40–53.CrossRefGoogle Scholar
  26. 26.
    Chia XY, Eng AYS, Ambrosi A, Tan SM, Pumera M. Electrochemistry of nanostructured layered transition-metal dichalcogenides. Chem Rev. 2015;115:11941–66.CrossRefGoogle Scholar
  27. 27.
    Liu XY, Han ZL, Li F, Gao LF, Liang GL, Cui H. Highly chemiluminescent graphene oxide hybrids bifunctionalized by N-(aminobutyl)-N-(ethylisoluminol)/horseradish peroxidase sensitive sensing of hydrogen peroxide. ACS Appl Mater Interfaces. 2015;7:18283–91.CrossRefGoogle Scholar
  28. 28.
    He Y, Huang GM, Cui H. Quenching the chemiluminescence of acridinium ester by graphene oxide for label-free and homogeneous DNA detection. ACS Appl Mater Interfaces. 2013;5:11336–40.CrossRefGoogle Scholar
  29. 29.
    Hao MJ, Liu N, Ma ZF. A new luminol chemiluminescence sensor for glucose based on pH-dependent graphene oxide. Analyst. 2013;138:4393–7.CrossRefGoogle Scholar
  30. 30.
    Yu HL, He Y, Li WH, Duan T. Graphitic carbon nitride nanosheets-enhanced chemiluminescence of luminol for sensitive detection of 2,4,6-trinitrotoluene. Sensors Actuators B. 2015;220:516–21.CrossRefGoogle Scholar
  31. 31.
    Bi S, Zhao TT, Luo BY. A graphene oxide platform for the assay of biomolecules based on chemiluminescence resonance energy transfer. Chem Commun. 2012;48:106–8.CrossRefGoogle Scholar
  32. 32.
    Chen C, Li BX. Graphene oxide-based homogenous biosensing platform for ultrasensitive DNA detection based on chemiluminescence resonance energy transfer and exonuclease III-assisted target recycling amplification. J Mater Chem B. 2013;1:2476–81.CrossRefGoogle Scholar
  33. 33.
    Luo M, Chen X, Zhou GH, Xiang X, Chen L, Ji XH, et al. Chemiluminescence biosensors for DNA detection using graphene oxide and a horseradish peroxidase-mimicking DNAzyme. Chem Commun. 2012;48:1126–8.CrossRefGoogle Scholar
  34. 34.
    Choi W, Choi J, Lee JH. Rapid hybridization using graphene oxide and 1,1’-oxalyldiimidazole chemiluminescence. RSC Adv. 2013;3:22455–60.CrossRefGoogle Scholar
  35. 35.
    Vlatakis G, Andersson LI, Müller R, Mosbach K. Drug assay using antibody mimics made by molecular imprinting. Nature. 1993;361:645–7.CrossRefGoogle Scholar
  36. 36.
    He C, Zhang ZJ, He DY, Xiong Y. Chemiluminescence determination of metformin based on hydroxyl radical reaction and molecularly imprinted polymer on-line enrichment. Anal Bioanal Chem. 2006;385:128–33.CrossRefGoogle Scholar
  37. 37.
    Bedwell TS, Whitcombe MJ. Analytical applications of MIPs in diagnostic assays: future perspectives. Anal Bioanal Chem. 2015. doi: 10.1007/s00216-015-9137-9.Google Scholar
  38. 38.
    Duan HM, Li XJ, Li LL, Wang XJ, Feng JJ, Sun M, et al. A novel chemiluminescence sensor for determination of vanillin with magnetite-graphene oxide molecularly imprinted polymers. Anal Methods. 2014;6:8706–12.CrossRefGoogle Scholar
  39. 39.
    Qiu HM, Luo CN, Sun M, Lu FG, Fan LL, Li XJ. A chemiluminescence sensor for determination of epinephrine using graphene oxide-magnetite-molecularly imprinted polymers. Carbon. 2012;50:4052–60.CrossRefGoogle Scholar
  40. 40.
    Qiu HM, Luo CN, Sun M, Lu FG, Fan LL, Li XJ. Determination of l-tryptophan based on graphene oxide-magnetite-molecularly imprinted polymers and chemiluminescence. Talanta. 2012;98:226–30.CrossRefGoogle Scholar
  41. 41.
    Qiu HM, Luo CN, Sun M, Lu FG, Fan LL, Li XJ. A chemiluminescence array sensor based on graphene-magnetite-molecularly imprinted polymers for determination of benzenediol isomers. Anal Chim Acta. 2012;744:75–81.CrossRefGoogle Scholar
  42. 42.
    Qiu HM, Fan LL, Li XJ, Li LL, Sun M, Luo CN. Determination sulfamethoxazole based chemiluminescence and chitosan/graphene oxide-molecularly imprinted polymers. Carbohydr Polym. 2013;92:394–9.CrossRefGoogle Scholar
  43. 43.
    Duan HM, Li LL, Wang XJ, Wang YH, Li JB, Luo CN, β-Cyclodextrin/chitosan-magnetic graphene oxide-surface molecularly imprinted polymer nanocomplex coupled with chemiluminescence biosensing of bovine serum albumin. RSC Adv. 2015;5:68397–68403Google Scholar
  44. 44.
    Duan HM, Li LL, Wang XJ, Wang YH, Li JB, Luo CN. A sensitive and selective chemiluminescence sensor for the determination of dopamine based on silanized magnetic graphene oxide-molecularly imprinted polymer. Spectrochim Acta A. 2015;139:374–9.CrossRefGoogle Scholar
  45. 45.
    Duan HM, Li LL, Wang XJ, Wang YH, Li JB, Luo CN. CdTe quantum dots@luminol for trace-level chemiluminescence sensing phenacetin based on biological recognition materials. New J Chem. 2015. doi: 10.1039/C5NJ01305D.Google Scholar
  46. 46.
    Duan HM, Li LL, Wang XJ, Wang YH, Li JB, Luo CN. CdTe quantum dots@luminol as signal amplification system for chrysoidine with chemiluminescence-chitosan/graphene oxide-magnetite-molecularly imprinting sensor. Spectrochim Acta A. 2016;153:535–41.CrossRefGoogle Scholar
  47. 47.
    Feng QZ, Li HF, Zhang ZY, Lin JM. Gold nanoparticles for enhanced chemiluminescence and determination of 2,4-dichlorophenol in environmental water samples. Analyst. 2011;136:2156–60.CrossRefGoogle Scholar
  48. 48.
    Huang XY, Liang YR, Ruan LG, Ren JC. Chemiluminescent detection of cell apoptosis enzyme by gold nanoparticle-based resonance energy transfer assay. Anal Bioanal Chem. 2014;406:5677–84.CrossRefGoogle Scholar
  49. 49.
    Li N, Liu DQ, Cui H. Metal-nanoparticle-involved chemiluminescence and its applications in bioassays. Anal Bioanal Chem. 2014;406:5561–71.CrossRefGoogle Scholar
  50. 50.
    Li YX, Yang P, Wang P, Wang L. Development of a novel luminol chemiluminescent method catalyzed by gold nanoparticles for determination of estrogens. Anal Bioanal Chem. 2007;387:585–92.CrossRefGoogle Scholar
  51. 51.
    Li Y, Ji XT, Liu BW, Chemiluminescence aptasensor for cocaine based on double-functionalized gold nanoprobes and functionalized magnetic microbeads. Anal Bioanal Chem. 2011;401:213–219.Google Scholar
  52. 52.
    He Y, Cui H. Synthesis of dendritic platinum nanoparticles/lucigenin/reduced graphene oxide hybrid with chemiluminescence activity. Chem Eur J. 2012;18:4823–6.CrossRefGoogle Scholar
  53. 53.
    He Y, Cui H. Synthesis of highly chemiluminescent graphene oxide/silver nanoparticle nano-composites and their analytical applications. J Mater Chem. 2012;22:9086–91.CrossRefGoogle Scholar
  54. 54.
    He Y, Cui H. Fabrication of luminol and lucigenin bifunctionalized gold nnanoparticles/graphene oxide nanocomposites with dual wavelength chemiluminescence. J Phys Chem C. 2012;116:12953–7.CrossRefGoogle Scholar
  55. 55.
    Chen AC, Holt-Hindle P. Platinum-based nanostructured materials: synthesis, properties, and applications. Chem Rev. 2010;110:3767–804.CrossRefGoogle Scholar
  56. 56.
    Yancey DF, Carino EV, Crooks RM. Electrochemical synthesis and electrocatalytic properties of Au@Pt dendrimer-encapsulated nanoparticles. J Am Chem Soc. 2010;132:10988–9.CrossRefGoogle Scholar
  57. 57.
    Ma XM, Meng H, Cai M, Shen PK. Bimetallic carbide nanocomposite enhanced Pt catalyst with high activity and stability for the oxygen reduction reaction. J Am Chem Soc. 2012;134:1954–7.CrossRefGoogle Scholar
  58. 58.
    Wang L, Yamauchi Y. Block copolymer mediated synthesis of dendritic platinum nanoparticles. J Am Chem Soc. 2009;131:9152–3.CrossRefGoogle Scholar
  59. 59.
    Yang P, Jin SY, Xu QZ, Yu SH. Decorating PtCo bimetallic alloy nanoparticles on graphene as sensors for glucose detection by catalyzing luminol chemiluminescence. Small. 2013;9:199–204.CrossRefGoogle Scholar
  60. 60.
    Sajid M, Basheer C. Layered double hydroxides: Emerging sorbent materials for analytical extractions. Trends Anal Chem. 2016;75:174–82.CrossRefGoogle Scholar
  61. 61.
    Wang ZH, Liu F, Teng X, Zhao CX, Lu C. Detection of hydrogen peroxide in rainwater based on Mg-Al-carbonate layered double hydroxides-catalyzed luminol chemiluminescence. Analyst. 2011;136:4986–90.CrossRefGoogle Scholar
  62. 62.
    Wang ZH, Liu F, Lu C. Chemiluminescence flow biosensor for glucose using Mg-Al carbonate layered double hydroxides as catalysts and buffer solutions. Biosens Bioelectron. 2012;38:284–8.CrossRefGoogle Scholar
  63. 63.
    Wang ZH, Liu F, Lu C. Mg-Al-carbonate layered double hydroxides as a novel catalyst of luminol chemiluminescence. Chem Commun. 2011;47:5479–81.CrossRefGoogle Scholar
  64. 64.
    Wang ZH, Teng X, Lu C. Carbonate interlayered hydrotalcites-enhanced peroxynitrous acid chemiluminescence for high selectivity sensing of ascorbic acid. Analyst. 2012;137:1876–81.CrossRefGoogle Scholar
  65. 65.
    Sels BF, De Vos DE, Jacobs PA. Kinetics of the oxygenation of unsaturated organics with singlet oxygen generated from H2O2 by a heterogeneous molybdenum catalyst. J Am Chem Soc. 2007;129:6916–26.CrossRefGoogle Scholar
  66. 66.
    Lin JM, Shan XQ, Hanaoka S, Yamada M. Luminol chemiluminescence in unbuffered solutions with a cobalt(II)-ethanolamine complex immobilized on resin as catalyst and its application to analysis. Anal Chem. 2001;73:5043–51.CrossRefGoogle Scholar
  67. 67.
    Zhang LJ, Chen YC, Zhang ZM, Lu C. Highly selective sensing of hydrogen peroxide based on cobalt-ethylenediaminetetraacetate complex intercalated layered double hydroxide-enhanced luminol chemiluminescence. Sensors Actuators B. 2014;193:752–8.CrossRefGoogle Scholar
  68. 68.
    Li L, Ma RZ, Ebina Y, Iyi N, Sasaki T. Positively charged nanosheets derived via total delamination of layered double hydroxides. Chem Mater. 2005;17:4386–91.CrossRefGoogle Scholar
  69. 69.
    Wang ZH, Liu F, Lu C. Evolution of biogenic amine concentrations in foods through their induced chemiluminescence inactivation of layered double hydroxide nanosheet colloids. Biosens Bioelectron. 2014;60:237–43.CrossRefGoogle Scholar
  70. 70.
    Dan N, Lau ML, Grayeski ML. Micellar-enhanced aqueous peroxyoxalate chemiluminescence. Anal Chem. 1991;63:1766–71.CrossRefGoogle Scholar
  71. 71.
    Dong SC, Zhong JP, Lu C. Introducing confinement effects into ultraweak chemiluminescence for an improved sensitivity. Anal Chem. 2014;867:7947–53.CrossRefGoogle Scholar
  72. 72.
    Natrajan A, Wen D. Use of degradable cationic surfactants with cleavable linkages for enhancing the chemiluminescence of acridinium ester labels. RSC Adv. 2013;3:21398–404.CrossRefGoogle Scholar
  73. 73.
    Zhang MC, Han DM, Lu C, Lin JM. Organo-modified layered double hydroxides switch-on chemiluminescence. J Phys Chem C. 2012;116:6371–5.Google Scholar
  74. 74.
    Zhang LJ, Zhang ZM, Lu C, Lin JM. Improved chemiluminescence in Fenton-like reaction via dodecylbenzene-sulfonate-intercalated layered double hydroxides. J Phys Chem C. 2012;116:14711–6.Google Scholar
  75. 75.
    Guan WJ, Zhou WJ, Huang QW, Lu C. Chemiluminescence as a novel indicator for interactions of surfactant-polymer mixtures at the surface of layered double hydroxides. J Phys Chem C. 2014;118:2792–8.CrossRefGoogle Scholar
  76. 76.
    Poznyak SK, Talapin DV, Shevchenko EV, Weller H. Quantum dot chemiluminescence. Nano Lett. 2004;4:693–8.CrossRefGoogle Scholar
  77. 77.
    Huang XY, Li L, Qian HF, Dong CQ, Ren JC. A resonance energy transfer between chemiluminescent donors and luminescent quantum-dots as acceptors (CRET). Angew Chem Int Ed. 2006;45:5140–3.CrossRefGoogle Scholar
  78. 78.
    Cao YQ, Sui DD, Zhou WJ, Lu C. Highly selective chemiluminescence detection of hydroxyl radical via increased π-electron densities of rhodamine B on montmorillonite matrix. Sensors Actuators B. 2016;225:600–6.CrossRefGoogle Scholar
  79. 79.
    Wang ZH, Teng X, Lu C. Universal chemiluminescence flow-through device based on directed self-assembly of solid-state organic chromophores on layered double hydroxide matrix. Anal Chem. 2013;85:2436–42.CrossRefGoogle Scholar
  80. 80.
    Shi WY, Bai LQ, Guo J, Zhao YF. A three dimensional nanowall of calcein/layered double hydroxide as an electrogenerated chemiluminescence sensor. RSC Adv. 2015;5:89056–61.CrossRefGoogle Scholar
  81. 81.
    Jin RR, Li LF, Lian YH, Xu XF, Zhao F. Layered double hydroxide supported Prussian blue nanocomposites for electrocatalytic reduction of H2O2. Anal Methods. 2012;4:2704–10.CrossRefGoogle Scholar
  82. 82.
    Keiluweit M, Kleber M. Molecular-level interactions in soils and sediments: the role of aromatic π-systems. Environ Sci Technol. 2009;43:3421–9.CrossRefGoogle Scholar
  83. 83.
    Konno S, Fujimura T, Otani Y, Shimada T, Inoue H, Takagi S. Microstructures of the porphyrin/viologen monolayer on the clay surface: Segregation or Integration? J Phys Chem C. 2014;118:20504–10.CrossRefGoogle Scholar
  84. 84.
    Swartzen-Allen SL, Matijevic E. Surface and colloid chemistry of clays. Chem Rev. 1974;74:385–400.CrossRefGoogle Scholar
  85. 85.
    Kumar BS, Dhakshinamoorthy A, Pitchumani K. K10 montmorillonite clays as environmentally benign catalysts for organic reactions. Catal Sci Technol. 2014;4:2378–96.CrossRefGoogle Scholar
  86. 86.
    Chen S, Zhou WJ, Cao YQ, Xue CC, Lu C. Organo-modified montmorillonite enhanced chemiluminescence via inactivation of halide counterions in a micellar solution. J Phys Chem C. 2014;118:2851–6.CrossRefGoogle Scholar
  87. 87.
    Zhou WJ, Guan WJ, Lu C. Natural montmorillonite nanosheet colloid-catalyzed hydrogen peroxide ultra-weak chemiluminescence. RSC Adv. 2014;4:15377–80.CrossRefGoogle Scholar
  88. 88.
    Wang ZH, Zhao CX, Han D, Gu FB. Luminol chemiluminescence actuated by modified natural sepiolite material and its analytical application. Anal Methods. 2015;7:2779–85.CrossRefGoogle Scholar
  89. 89.
    Wang ZH, Guo L, Han DM, Gu FB. An ultrasensitive calcein sensor based on the implementation of a novel chemiluminescence system with modified kaolin. Sensors Actuators B. 2015;212:64–272.Google Scholar
  90. 90.
    Marçal L, de Faria EH, Nassar EJ, Trujillano R, Martín N, Vicente MA, et al. Organically modified saponites: SAXS study of swelling and application in caffeine removal. ACS Appl Mater Int. 2015;7:10853–62.CrossRefGoogle Scholar
  91. 91.
    Huang S, Cen X, Peng HD, Guo SZ, Wang WZ, Liu TX. Heterogeneous ultrathin films of poly(vinyl alcohol)/layered double hydroxide and montmorillonite nanosheets via layer-by-layer assembly. J Phys Chem B. 2009;113:15225–30.CrossRefGoogle Scholar
  92. 92.
    Navalon S, Alvaro M, Garcia H. Heterogeneous Fenton catalysts based on clays, silicas and zeolites. Appl Catal B. 2010;99:1–26.CrossRefGoogle Scholar
  93. 93.
    Çınar M, Can MF, Sabah E, Karagüzel C, Çelik MS. Rheological properties of sepiolite ground in acid and alkaline media. Appl Clay Sci. 2009;42:422–6.CrossRefGoogle Scholar
  94. 94.
    Sárossy Z, Blomfeldt TOJ, Hedenqvist MS, Koch CB, Ray SS, Plackett D. Composite films of arabinoxylan and fibrous sepiolite: morphological, mechanical, and barrier properties. ACS Appl Mater Interfaces. 2012;4:3378–86.CrossRefGoogle Scholar
  95. 95.
    Godlewska-Żyłkiewicz B, Malejko J, Leśniewska B, Kojło A. Assessment of immobilized yeast for the separation and determination of platinum in environmental samples by flow-injection chemiluminescence and electrothermal atomic absorption spectrometry. Microchim Acta. 2008;163:327–34.CrossRefGoogle Scholar
  96. 96.
    Belver C, Munõz MAB, Vicente MA. Chemical activation of a kaolinite under acid and alkaline conditions. Chem Mater. 2002;14:2033–43.CrossRefGoogle Scholar
  97. 97.
    Dedzo GK, Detellier C. Ionic liquid-kaolinite nanohybrid materials for the amperometric detection of trace levels of iodide. Analyst. 2013;138:767–70.CrossRefGoogle Scholar
  98. 98.
    Frost RL, Kristof J, Mako E, Martens WN. Modification of the hydroxyl surface of kaolinite through mechanochemical treatment followed by intercalation with potassium acetate. Langmuir. 2002;18:6491–8.CrossRefGoogle Scholar
  99. 99.
    Xin TB, Liang SX, Wang X, Li HF, Lin JM. Determination of estradiol in human serum using magnetic particles-based chemiluminescence immunoassay. Anal Chim Acta. 2008;627:277–84.CrossRefGoogle Scholar
  100. 100.
    Dyke KV, Patel S, Vallyathan V. Lucigenin chemiluminescence assay as an adjunctive tool for assessment of various stages of inflammation: a study of quiescent inflammatory cells. J Biosci. 2003;28:115–9.CrossRefGoogle Scholar
  101. 101.
    Zhang LJ, He N, Lu C. Aggregation-induced emission: a simple strategy to improve chemiluminescence resonance energy transfer. Anal Chem. 2015;87:1351–7.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations