Analytical and Bioanalytical Chemistry

, Volume 408, Issue 14, pp 3681–3698 | Cite as

Development and application of a QuEChERS-based extraction method for the analysis of 55 pesticides in the bivalve Scrobicularia plana by GC-MS/MS

  • Catarina Cruzeiro
  • Nádia Rodrigues-Oliveira
  • Susana Velhote
  • Miguel Ângelo Pardal
  • Eduardo Rocha
  • Maria João Rocha
Research Paper


A method for quantitative determination of 55 pesticides in a bivalve matrix was established, based on QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) extraction and using gas chromatography (GC)-ion trap (IT) mass spectrometry (MS/MS). Accomplishing the European SANCO guidelines, this method was validated using 5 g of homogenized soft tissue, allowing the quantification of pesticides at ng/g of wet weight (ww). Quantification limits and recovery rates ranged from 0.33 to 10.3 μg/L and from 78 to 119 %, respectively. As an important mollusc, not only from an ecological perspective but also for food consumption, the peppery furrow shell (Scrobicularia plana) was sampled at three strategical sites (Ria Formosa Lagoon, in the south of Portugal) during 2012–2013, over six campaigns. A total of 2160 animals were pooled by place and sex. No statistical differences were found among sites or between sexes. Forty percent of the sampled pools were above quantification limits, reaching total annual average concentrations of ∑800 ng/g ww. Additionally, 83 % of the selected compounds showed concentrations above the legal limits set by the European Directive 2013/39/EU. In conclusion, the applied method was successful and proved that bivalves were contaminated by the selected pesticides. In future work, this methodology can be used to monitor body burdens and obtain data for predicting impacts in shellfish consumers.

Graphical Abstract

Resume of pesticides extraction and analyses process from S. plana


2013/39/EU Fungicides Herbicides Insecticides SANCO/825/00 Seafood 



This research was partially supported by the European Regional Development Fund (ERDF) through the COMPETE - Operational Competitiveness Programme, and POPH – Operational Human Potential Programme, and by national Portuguese funds, through FCT – Foundation for Science and Technology, via the strategic funding project UID/Multi/04423/2013, project PTDC/MAR/70436/2006 (FCOMP-01-0124.FEDER-7382), and, finally, the PhD grant attributed to C.C. (SFRH/BD/79305/2011).

The authors thank the expert advice and help offered by Célia Lopes to perform the Diff-Quick staining of the bivalves’ gonad squashes. A special thanks is also extended to Sukanlaya Tantiwisawaruji for the help when staining the cited squashes. Acknowledgements are also due to Ana Valente, PhD for proofreading the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

All the animals received human care and all experimental protocols were performed in accordance with the Portuguese Animal Welfare Law (Decreto-Lei no.113/2013, 7 de Agosto D.R. no. 151, Série I) and animal protocols approved by CIIMAR/UP and DGAV (Direcção-Geral de Alimentação e Veterinária, the Portuguese National Authority for Animal Health).

Supplementary material

216_2016_9440_MOESM1_ESM.pdf (377 kb)
ESM 1 (PDF 377 kb)


  1. 1.
    US Environmental Protection Agency (EPA). Persistent organic pollutants: a global issue, a global response: Office of International Affairs, US EPA; 2002, p. 26Google Scholar
  2. 2.
    Falconer IR. Are endocrine disrupting compounds a health risk in drinking water? Int J Environ Res Public Health. 2006;3(2):180–4.CrossRefGoogle Scholar
  3. 3.
    Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, von Gunten U, Wehrli B. The challenge of micropollutants in aquatic systems. Science. 2006;313(5790):1072–7.CrossRefGoogle Scholar
  4. 4.
    Badach H, Nazimek T, Kaminska IA. Pesticide content in drinking water samples collected from orchard areas in central Poland. Ann Agric Environ Med. 2007;14(1):109.Google Scholar
  5. 5.
    Manecki P, Gałuszka A. Groundwater quality as a geoindicator of organochlorine pesticide contamination after pesticide tomb reclamation: a case study of Franciszkowo, Northwestern Poland. Environ Earth Sci. 2012;67(8):2441–7.CrossRefGoogle Scholar
  6. 6.
    Pawełczyk A. Assessment of health risk associated with persistent organic pollutants in water. Environ Monit Assess. 2013;185(1):497–508.CrossRefGoogle Scholar
  7. 7.
    Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, Silliman BR. The value of estuarine and coastal ecosystem services. Ecol Monogr. 2010;81(2):169–93.CrossRefGoogle Scholar
  8. 8.
    Katagi T. Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms. In: Whitacre DM, editor. Reviews of Environmental Contamination and Toxicology. New York: Springer; 2010. p. 1–132.Google Scholar
  9. 9.
    Pitarch E, Medina C, Portolés T, López FJ, Hernández F. Determination of priority organic micro-pollutants in water by gas chromatography coupled to triple quadrupole mass spectrometry. Anal Chim Acta. 2007;583(2):246–58.CrossRefGoogle Scholar
  10. 10.
    Scholz NL, Fleishman E, Brown L, Werner I, Johnson ML, Brooks ML, Mitchelmore CL, Schlenk D. A perspective on modern pesticides, pelagic fish declines, and unknown ecological resilience in highly managed ecosystems. Bioscience. 2012;62(4):428–634.CrossRefGoogle Scholar
  11. 11.
    Osterberg JS, Darnell KM, Blickley TM, Romano JA, Rittschof D. Acute toxicity and sub-lethal effects of common pesticides in post-larval and juvenile blue crabs, Callinectes sapidus. J Exp Mar Biol Ecol. 2012;424/425(0):5–14.CrossRefGoogle Scholar
  12. 12.
    Köhler H-R, Triebskorn R. Wildlife ecotoxicology of pesticides: can we track effects to the population level and beyond? Science. 2013;341(6147):759–65.CrossRefGoogle Scholar
  13. 13.
    Tsygankov VY, Boyarova MD, Lukyanova ON. Bioaccumulation of persistent organochlorine pesticides (OCPs) by gray whale and Pacific walrus from the western part of the Bering Sea. Mar Pollut Bull. 2015;99(1-2):235–39.Google Scholar
  14. 14.
    LeDoux M. Analytical methods applied to the determination of pesticide residues in foods of animal origin. A review of the past two decades. J Chromatogr A. 2011;1218(8):1021–36.CrossRefGoogle Scholar
  15. 15.
    Carroll ML, Johnson BJ, Henkes GA, McMahon KW, Voronkov A, Ambrose Jr WG, Denisenko SG. Bivalves as indicators of environmental variation and potential anthropogenic impacts in the southern Barents Sea. Mar Pollut Bull. 2009;59(4/7):193–206.CrossRefGoogle Scholar
  16. 16.
    Rodríguez-González N, González-Castro MJ, Beceiro-González E, Muniategui-Lorenzo S. Development of a matrix solid phase dispersion methodology for the determination of triazine herbicides in mussels. Food Chem. 2015;173:391–6.CrossRefGoogle Scholar
  17. 17.
    Instituto nacional de estatística (INE). Estatística da pesca 2010. In: Direção-geral de recursos naturais segurança e serviços marítimos, pp. 101; INE: Lisbon, PortugalGoogle Scholar
  18. 18.
    Food balance / food supply - livestock and fish primary equivalent. FAO. 2015. Available at: Accessed 3-11-2015
  19. 19.
    Gomes T, Gonzalez-Rey M, Bebianno M. Incidence of intersex in male clams, Scrobicularia plana, in the Guadiana Estuary, Portugal. Ecotoxicology. 2009;18(8):1104–9.CrossRefGoogle Scholar
  20. 20.
    Santos S, Luttikhuizen PC, Campos J, Heip CHR, van der Veer HW. Spatial distribution patterns of the peppery furrow shell Scrobicularia plana (da Costa, 1778) along the European coast: a review. J Sea Res. 2011;66(3):238–47.CrossRefGoogle Scholar
  21. 21.
    Langston WJ, Burt GR, Chesman BS. Feminisation of male clams Scrobicularia plana from estuaries in southwest UK and its induction by endocrine-disrupting chemicals. Marine Ecol Prog Ser. 2007;333:173–84.CrossRefGoogle Scholar
  22. 22.
    Wille K, Kiebooms JL, Claessens M, Rappé K, Vanden Bussche J, Noppe H, Van Praet N, De Wulf E, Van Caeter P, Janssen C, De Brabander H, Vanhaecke L. Development of analytical strategies using U-HPLC-MS/MS and LC-ToF-MS for the quantification of micropollutants in marine organisms. Anal Bioanal Chem. 2011;400(5):1459–72.Google Scholar
  23. 23.
    Jacomini AE, de Camargo PB, Avelar WEP, Bonato PS. Assessment of ametryn contamination in river water, river sediment, and mollusk bivalves in São Paulo state, Brazil. Arch Environ Contam Toxicol. 2011;60(3):452–61.CrossRefGoogle Scholar
  24. 24.
    da Silva DML, Camargo PB, Martinelli LA, Lanças FM, Pinto JS, Avelar WEP. Organochlorine pesticides in Piracicaba river basin (São Paulo, Brazil): a survey of sediment, bivalve, and fish. Qui Nova. 2008;31(2):214–9.CrossRefGoogle Scholar
  25. 25.
    Helaleh MIH, Al-Rashdan A, Ibtisam A. Simultaneous analysis of organochlorinated pesticides (OCPs) and polychlorinated biphenyls (PCBs) from marine samples using automated pressurized liquid extraction (PLE) and Power Prep™ clean-up. Talanta. 2012;94:44–9.CrossRefGoogle Scholar
  26. 26.
    Galvao P, Henkelmann B, Longo R, Lailson-Brito J, Torres JPM, Schramm K-W, Malm O. Distinct bioaccumulation profile of pesticides and dioxin-like compounds by mollusk bivalves reared in polluted and unpolluted tropical bays: Consumption risk and seasonal effect. Food Chem. 2012;134(4):2040–8.CrossRefGoogle Scholar
  27. 27.
    Yang Y, Liu M, Xu S, Hou L, Ou D, Liu H, Cheng S, Hofmann T. HCHs and DDTs in sediment-dwelling animals from the Yangtze Estuary, China. Chemosphere. 2006;62(3):381–9.CrossRefGoogle Scholar
  28. 28.
    Martínez Vidal JL, Plaza-Bolaños P, Romero-González R, Garrido Frenich A. Determination of pesticide transformation products: a review of extraction and detection methods. J Chromatogr A. 2009;1216(40):6767–688.CrossRefGoogle Scholar
  29. 29.
    Maštovská K, Lehotay SJ, Anastassiades M. Combination of analyte protectants to overcome matrix effects in routine GC analysis of pesticide residues in food matrixes. Anal Chem. 2005;77(24):8129–37.CrossRefGoogle Scholar
  30. 30.
    Prestes OD, Friggi CA, Adaime MB, Zanella R. QuEChERS–um método moderno de preparo de amostra para determinação multirresíduo de pesticidas em alimentos por métodos cromatográficos acoplados à espectrometria de massas. Quim Nova. 2009;32(6):1620–34.CrossRefGoogle Scholar
  31. 31.
    Rejczak T, Tuzimski T. A review of recent developments and trends in the QuEChERS sample preparation approach. Open Chem 13(1):980–1010.Google Scholar
  32. 32.
    Camel V (2001) Recent extraction techniques for solid matrices-supercritical fluid extraction, pressurized fluid extraction and microwave-assisted extraction: their potential and pitfalls. Critical review-vol 7. AnalystGoogle Scholar
  33. 33.
    Carro N, García I, Llompart M. Clossed-vessel assisted microwave extraction of polychlorinated biphenyls in marine mussels. Analusis. 2000;28(8):720–4.CrossRefGoogle Scholar
  34. 34.
    Sánchez-Avila J, Fernandez-Sanjuan M, Vicente J, Lacorte S. Development of a multi-residue method for the determination of organic micropollutants in water, sediment and mussels using gas chromatography–tandem mass spectrometry. J Chromatogr A. 2011;1218(38):6799–811.CrossRefGoogle Scholar
  35. 35.
    Commission Decision (2002/657/EC) implementing council directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. Sect. 8Google Scholar
  36. 36.
    Directive 2013/39/EU of the European parliament and of the council of 12 August 2013: amending directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policyGoogle Scholar
  37. 37.
    European Commission Directorate General Health and Consumer Protection. Guidance document on pesticides residue analytical methods. In: Directorate General Health and Consumer Protection, 2010. p. 27; SANCO/825/00 rev 8.1Google Scholar
  38. 38.
    Anastassiades M, Maštovská K, Lehotay SJ. Evaluation of analyte protectants to improve gas chromatographic analysis of pesticides. J Chromatogr A. 2003;1015(1/2):163–84.CrossRefGoogle Scholar
  39. 39.
    Ribeiro J, Bentes L, Coelho R, Gonçalves JMS, Lino PG, Monteiro P, Erzini K. Seasonal, tidal, and diurnal changes in fish assemblages in the Ria Formosa lagoon (Portugal). Estuar Coast Shelf S. 2006;67(3):461–74.CrossRefGoogle Scholar
  40. 40.
    Butt D, O'Connor SJ, Kuchel R, O’Connor WA, Raftos DA. Effects of the muscle relaxant, magnesium chloride, on the Sydney rock oyster (Saccostrea glomerata). Aquaculture. 2008;275(1/4):342–6.CrossRefGoogle Scholar
  41. 41.
    Mouneyrac C, Linot S, Amiard JC, Amiard-Triquet C, Métais I, Durou C, Minier C, Pellerin J. Biological indices, energy reserves, steroid hormones, and sexual maturity in the infaunal bivalve Scrobicularia plana from three sites differing by their level of contamination. Gen Comp Endocr. 2008;157(2):133–41.CrossRefGoogle Scholar
  42. 42.
    Anastassiades M, Lehotay SJ, Tajnbaher D, Schenck FJ. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and dispersive solid-phase extraction for the determination of pesticide residues in produce. J AOAC Int. 2003;86(2):412–31.Google Scholar
  43. 43.
    AOAC International. Pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulfate. Official methods of analysis 200701. 2007;AOAC 2007.01,:9Google Scholar
  44. 44.
    Cruzeiro C, Pardal M, Rocha E, Rocha M. Occurrence and seasonal loads of pesticides in surface water and suspended particulate matter from a wetland of worldwide interest—the Ria Formosa Lagoon, Portugal. Environ Monit Assess. 2015;187(11):1–21.CrossRefGoogle Scholar
  45. 45.
    Cruzeiro C, Rocha E, Pardal MÂ, Rocha MJ. Uncovering seasonal patterns of 56 pesticides in surface coastal waters of the Ria Formosa lagoon (Portugal), using a GC-MS method. Int Environ Anal Chem. 2015;95(14):1370–84.CrossRefGoogle Scholar
  46. 46.
    Hammer Ø, Harper D, Ryan P. PAST–Paleontological statistics software package for education and data analysis, version. 1.73. Paleontologia Electronica. 2001;4:1–9.Google Scholar
  47. 47.
    Muzyka A, Bazna A, Semilekto Y, Yemelyanov A (2012) Prism 6 for Windowns. 6.01 edition. GraphPad Software, Inc.: San Diego, CAGoogle Scholar
  48. 48.
    Mendes de Oliveira MCR (2012) [Moluscos bivalves em Portugal: composição química e metais contaminantes.] Universidade Nova de Lisboa: LisboaGoogle Scholar
  49. 49.
    Norli HR, Christiansen A, Deribe E. Application of QuEChERS method for extraction of selected persistent organic pollutants in fish tissue and analysis by gas chromatography mass spectrometry. J Chromatogr A. 2011;1218(41):7234–41.CrossRefGoogle Scholar
  50. 50.
    Omar N, Bakar J, Muhammad K. Determination of organochlorine pesticides in shrimp by gas chromatography-mass spectrometry using a modified QuEChERS approach. Food Control. 2013;34(2):318–22.CrossRefGoogle Scholar
  51. 51.
    Payá P, Anastassiades M, Mack D, Sigalova I, Tasdelen B, Oliva J, Barba A. Analysis of pesticide residues using the Quick Easy Cheap Effective Rugged and Safe (QuEChERS) pesticide multiresidue method in combination with gas and liquid chromatography and tandem mass spectrometric detection. Anal Bioanal Chem. 2007;389(6):1697–714.CrossRefGoogle Scholar
  52. 52.
    Čajka T, Maštovská K, Lehotay SJ, Hajšlová J. Use of automated direct sample introduction with analyte protectants in the GC-MS analysis of pesticide residues. J Sep Sci. 2005;28(9/10):1048–60.Google Scholar
  53. 53.
    Sánchez-Brunete C, Albero B, Martin G, Tadeo JL. Determination of pesticide residues by GC-MS using analyte protectants to counteract the matrix effect. Anal Sci. 2005;21(11):1291–6.CrossRefGoogle Scholar
  54. 54.
    Hummel H, Bogaards RH, Nieuwenhuize J, De Wolf L, Van Liere JM. Spatial and seasonal differences in the PCB content of the mussel Mytilus edulis. Sci Total Environ. 1990;92:155–63.CrossRefGoogle Scholar
  55. 55.
    Suárez P, Ruiz Y, Alonso A, San Juan F. Organochlorine compounds in mussels cultured in the Ría of Vigo: accumulation and origin. Chemosphere. 2013;90(1):7–19.CrossRefGoogle Scholar
  56. 56.
    Chu F-LE, Soudant P, Hale RC. Relationship between PCB accumulation and reproductive output in conditioned oysters Crassostrea virginica fed a contaminated algal diet. Aquat Toxicol. 2003;65(3):293–307.CrossRefGoogle Scholar
  57. 57.
    Rodrı́guez-Rúa A, Prado MA, Romero Z, Bruzón M. The gametogenic cycle of Scrobicularia plana (da Costa, 1778) (Mollusc: Bivalve) in Guadalquivir estuary (Cádiz, SW Spain). Aquaculture. 2003;217(1/4):157–66.CrossRefGoogle Scholar
  58. 58.
    Akberali HB, Trueman ER, Black JE, Hewitt C. The responses of the estuarine bivalve mollusc Scrobicularia to the first hydrolytic product of the insecticide Sevin®. Estuarine Cont Shelf Res. 1982;15(4):415–21.CrossRefGoogle Scholar
  59. 59.
    Damásio J, Navarro-Ortega A, Tauler R, Lacorte S, Barceló D, Soares A, López M, Riva M, Barata C. Identifying major pesticides affecting bivalve species exposed to agricultural pollution using multi-biomarker and multivariate methods. Ecotoxicology. 2010;19(6):1084–94.Google Scholar
  60. 60.
    Galloway TS, Millward N, Browne MA, Depledge MH. Rapid assessment of organophosphorous/carbamate exposure in the bivalve mollusc Mytilus edulis using combined esterase activities as biomarkers. Aquat Toxicol. 2002;61(3/4):169–80.CrossRefGoogle Scholar
  61. 61.
    Grilo TF, Cardoso PG, Pato P, Duarte AC, Pardal MA. Organochlorine accumulation on a highly consumed bivalve (Scrobicularia plana) and its main implications for human health. Sci Total Environ. 2013;461–462:188–97.CrossRefGoogle Scholar
  62. 62.
    Coelho JP, Duarte AC, Pardal MA, Pereira ME. Scrobicularia plana (Mollusca, Bivalvia) as a biomonitor for mercury contamination in Portuguese estuaries. Ecol Indic. 2014;46:447–53.CrossRefGoogle Scholar
  63. 63.
    Cardoso PG, Pereira E, Duarte AC, Azeiteiro UM. Temporal characterization of mercury accumulation at different trophic levels and implications for metal biomagnification along a coastal food web. Mar Pollut Bull. 2014;87(1/2):39–47.CrossRefGoogle Scholar
  64. 64.
    Machado L, Bebianno M, Boski T, Moura D. Trace metals on the Algarve coast. 2: Bioaccumulation in mussels Mytilus galloprovincialis (Lamarck, 1819). Bol Inst Esp Oceanogr. 1999;15(1):465–71.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Catarina Cruzeiro
    • 1
    • 2
  • Nádia Rodrigues-Oliveira
    • 2
  • Susana Velhote
    • 2
  • Miguel Ângelo Pardal
    • 3
  • Eduardo Rocha
    • 1
    • 2
  • Maria João Rocha
    • 1
    • 2
  1. 1.ICBAS—Institute of Biomedical Sciences Abel Salazar, Department of MicroscopyU.Porto—University of PortoPortoPortugal
  2. 2.CIIMAR/CIMAR—Interdisciplinary Centre for Marine and Environmental Research, Group of Histomorphology, Physiopathology, and Applied ToxicologyU.Porto—University of PortoPortoPortugal
  3. 3.CFE—Centre for Functional Ecology, Department of Life SciencesUC—University of CoimbraCoimbraPortugal

Personalised recommendations