Analytical and Bioanalytical Chemistry

, Volume 408, Issue 13, pp 3453–3474 | Cite as

TransOmic analysis of forebrain sections in Sp2 conditional knockout embryonic mice using IR-MALDESI imaging of lipids and LC-MS/MS label-free proteomics

  • Philip Loziuk
  • Florian Meier
  • Caroline Johnson
  • H. Troy Ghashghaei
  • David C. Muddiman
Research Paper


Quantitative methods for detection of biological molecules are needed more than ever before in the emerging age of “omics” and “big data.” Here, we provide an integrated approach for systematic analysis of the “lipidome” in tissue. To test our approach in a biological context, we utilized brain tissue selectively deficient for the transcription factor Specificity Protein 2 (Sp2). Conditional deletion of Sp2 in the mouse cerebral cortex results in developmental deficiencies including disruption of lipid metabolism. Silver (Ag) cationization was implemented for infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) to enhance the ion abundances for olefinic lipids, as these have been linked to regulation by Sp2. Combining Ag-doped and conventional IR-MALDESI imaging, this approach was extended to IR-MALDESI imaging of embryonic mouse brains. Further, our imaging technique was combined with bottom-up shotgun proteomic LC-MS/MS analysis and western blot for comparing Sp2 conditional knockout (Sp2-cKO) and wild-type (WT) cortices of tissue sections. This provided an integrated omics dataset which revealed many specific changes to fundamental cellular processes and biosynthetic pathways. In particular, step-specific altered abundances of nucleotides, lipids, and associated proteins were observed in the cerebral cortices of Sp2-cKO embryos.

Graphical abstract

TransOmic Analysis of Dorsolateral cortices of Sp2 conditional Knockout mouse embryos. Target tissue was extracted by laser microdissection and analyzed by LC-MS/MS label- free quantitative proteomics. In parallel, lipid imaging of these tissues was performed by conventional IR-MALDESI and Agdoped IR-MALDESI imaging. These data were then integrated to obtain insight into lipid pathways altered by presence or absence of transcription factor Specificity Protein 2


IR-MALDESI Proteomics Lipidomics Mass spectrometry imaging Embryonic brain 



This work was supported by NIH R01NS089795 (HTG), NIH R01GM087964 (DCM), and the NIH/NCSU Molecular Biotechnology Training Grant 5T32GM00-8776-08 (PL). FM acknowledges travel funding from DAAD (German Academic Exchange Service).

Compliance with ethical standards

The authors declare that they have no conflicts of interest. Mice used in this study were bred and housed in the College of Veterinary Medicine vivarium according to Institutional Animal Care and Use Committee (IACUC), North Carolina State University regulations, and Public Health Service (PHS) Policy on Humane Care and Use of Laboratory Animals.

Supplementary material

216_2016_9421_MOESM1_ESM.pdf (2.1 mb)
ESM 1 (PDF 1462 kb)
216_2016_9421_MOESM2_ESM.xlsx (1.8 mb)
ESM 2 (XLSX 1852 kb)


  1. 1.
    Volkel S, Stielow B, Finkernagel F, Stiewe T, Nist A, Suske G. Zinc finger independent genome-wide binding of Sp2 potentiates recruitment of histone-fold protein Nf-y distinguishing it from Sp1 and Sp3. PLoS Genet. 2015;3, e1005102.CrossRefGoogle Scholar
  2. 2.
    Terrados G, Finkernagel F, Stielow B, Sadic D, Neubert J, Herdt O, et al. Genome-wide localization and expression profiling establish Sp2 as a sequence-specific transcription factor regulating vitally important genes. Nucleic Acids Res. 2012;16:7844–57.CrossRefGoogle Scholar
  3. 3.
    Liang H, Xiao G, Yin H, Hippenmeyer S, Horowitz JM, Ghashghaei HT. Neural development is dependent on the function of specificity protein 2 in cell cycle progression. Development. 2013;3:552–61.CrossRefGoogle Scholar
  4. 4.
    Robichaud G, Barry JA, Garrard KP, Muddiman DC. Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) imaging source coupled to a FT-ICR mass spectrometer. J Am Soc Mass Spectrom. 2013;1:92–100.CrossRefGoogle Scholar
  5. 5.
    Robichaud G, Barry JA, Muddiman DC. IR-MALDESI mass spectrometry imaging of biological tissue sections using ice as a matrix. J Am Soc Mass Spectrom. 2014;3:319–28.CrossRefGoogle Scholar
  6. 6.
    Barry JA, Muddiman DC. Global optimization of the infrared matrix-assisted laser desorption electrospray ionization (IR MALDESI) source for mass spectrometry using statistical design of experiments. Rapid Commun Mass Spectrom. 2011;23:3527–36.CrossRefGoogle Scholar
  7. 7.
    Houjou T, Yamatani K, Imagawa M, Shimizu T, Taguchi R. A shotgun tandem mass spectrometric analysis of phospholipids with normal-phase and/or reverse-phase liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom. 2005;5:654–66.CrossRefGoogle Scholar
  8. 8.
    Shoji N, Nakagawa K, Asai A, Fujita I, Hashiura A, Nakajima Y, et al. LC-MS/MS analysis of carboxymethylated and carboxyethylated phosphatidylethanolamines in human erythrocytes and blood plasma. J Lipid Res. 2010;8:2445–53.CrossRefGoogle Scholar
  9. 9.
    Myers DS, Ivanova PT, Milne SB, Brown HA. Quantitative analysis of glycerophospholipids by LC-MS: acquisition, data handling, and interpretation. Biochim Biophys Acta Mol Cell Biol Lipids. 2011;11:748–57.CrossRefGoogle Scholar
  10. 10.
    Ecker J. Profiling eicosanoids and phospholipids using LC-MS/MS: principles and recent applications. J Sep Sci. 2012;10–11:1227–35.CrossRefGoogle Scholar
  11. 11.
    Ogiso H, Suzuki T, Taguchi R. Development of a reverse-phase liquid chromatography electrospray ionization mass spectrometry method for lipidomics, improving detection of phosphatidic acid and phosphatidylserine. Anal Biochem. 2008;1:124–31.CrossRefGoogle Scholar
  12. 12.
    Roberg-Larsen H, Vesterdal C, Wilson SR, Lundanes E. Underivatized oxysterols and nanoLC-ESI-MS: a mismatch. Steroids. 2015;99:125–30.CrossRefGoogle Scholar
  13. 13.
    Fhaner CJ, Liu SC, Ji H, Simpson RJ, Reid GE. Comprehensive lipidome profiling of isogenic primary and metastatic colon adenocarcinoma cell lines. Anal Chem. 2012;21:8917–26.CrossRefGoogle Scholar
  14. 14.
    Meier F, Garrard KP, Muddiman DC. Silver dopants for targeted and untargeted direct analysis of unsaturated lipids via infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI). Rapid Commun Mass Spectrom. 2014;22:2461–70.CrossRefGoogle Scholar
  15. 15.
    Gokce E, Franck WL, Oh Y, Dean RA, Muddiman DC. In-depth analysis of the Magnaporthe oryzae conidial proteome. J Proteome Res. 2012;12:5827–35.CrossRefGoogle Scholar
  16. 16.
    Loziuk PL, Parker J, Li W, Lin CY, Wang JP, Li Q, et al. Elucidation of xylem-specific transcription factors and absolute quantification of enzymes regulating cellulose biosynthesis in Populus trichocarpa. J Proteome Res. 2015.Google Scholar
  17. 17.
    Scheltema RA, Hauschild JP, Lange O, Hornburg D, Denisov E, Damoc E, et al. The Q exactive HF, a benchtop mass spectrometer with a pre-filter, high-performance quadrupole and an ultra-high-field Orbitrap analyzer. Mol Cell Proteomics. 2014;12:3698–708.CrossRefGoogle Scholar
  18. 18.
    Kelstrup CD, Jersie-Christensen RR, Batth TS, Arrey TN, Kuehn A, Kellmann M, et al. Rapid and deep proteomes by faster sequencing on a benchtop quadrupole ultra-high-field Orbitrap mass spectrometer. J Proteome Res. 2014;12:6187–95.CrossRefGoogle Scholar
  19. 19.
    Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B. Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem. 2007;4:1017–31.CrossRefGoogle Scholar
  20. 20.
    Olsen JV, de Godoy LM, Li G, Macek B, Mortensen P, Pesch R, et al. Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Mol Cell Proteomics. 2005;12:2010–21.CrossRefGoogle Scholar
  21. 21.
    Jones EA, Deininger SO, Hogendoorn PC, Deelder AM, McDonnell LA. Imaging mass spectrometry statistical analysis. J Proteome. 2012;16:4962–89.CrossRefGoogle Scholar
  22. 22.
    Fonville JM, Carter C, Cloarec O, Nicholson JK, Lindon JC, Bunch J, et al. Robust data processing and normalization strategy for MALDI mass spectrometric imaging. Anal Chem. 2012;3:1310–9.CrossRefGoogle Scholar
  23. 23.
    Bray JH, Scott E. Multivariate analysis of variance. Newbury park, CA: Sage; 1985.Google Scholar
  24. 24.
    Krzywinski M, Altman N. Significance, P values and t-tests. Nat Methods. 2013;11:1041–2.CrossRefGoogle Scholar
  25. 25.
    Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. Controlling the false discovery rate in behavior genetics research. Behav Brain Res. 2001;1–2:279–84.CrossRefGoogle Scholar
  26. 26.
    Smith CA, O'Maille G, Want EJ, Qin C, Trauger SA, Brandon TR, et al. METLIN: a metabolite mass spectral database. Ther Drug Monit. 2005;6:747–51.CrossRefGoogle Scholar
  27. 27.
    Huang DW, Sherman BT, Tan Q, Collins JR, Alvord WG, Roayaei J, et al. The DAVID gene functional classification tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol. 2007;9:R183.CrossRefGoogle Scholar
  28. 28.
    Dietschy JM, Turley SD. Thematic review series: brain lipids. Cholesterol metabolism in the central nervous system during early development and in the mature animal. J Lipid Res. 2004;8:1375–97.CrossRefGoogle Scholar
  29. 29.
    Bjorkhem I, Meaney S. Brain cholesterol: long secret life behind a barrier. Arterioscler Thromb Vasc Biol. 2004;5:806–15.CrossRefGoogle Scholar
  30. 30.
    van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol. 2008;2:112–24.CrossRefGoogle Scholar
  31. 31.
    Orth M, Bellosta S. Cholesterol: its regulation and role in central nervous system disorders. Cholesterol. 2012;292598.Google Scholar
  32. 32.
    Herz J, Farese Jr RV. The LDL receptor gene family, apolipoprotein B and cholesterol in embryonic development. J Nutr. 1999;2S(Suppl):473S–5S.Google Scholar
  33. 33.
    Saher G, Brugger B, Lappe-Siefke C, Mobius W, Tozawa R, Wehr MC, et al. High cholesterol level is essential for myelin membrane growth. Nat Neurosci. 2005;4:468–75.Google Scholar
  34. 34.
    Lanekoff I, Burnum-Johnson K, Thomas M, Short J, Carson JP, Cha J, et al. High-speed tandem mass spectrometric in situ imaging by nanospray desorption electrospray ionization mass spectrometry. Anal Chem. 2013;20:9596–603.CrossRefGoogle Scholar
  35. 35.
    Landgraf RR, Prieto Conaway MC, Garrett TJ, Stacpoole PW, Yost RA. Imaging of lipids in spinal cord using intermediate pressure matrix-assisted laser desorption-linear ion trap/Orbitrap MS. Anal Chem. 2009;20:8488–95.CrossRefGoogle Scholar
  36. 36.
    Perdian DC, Lee YJ. Imaging MS methodology for more chemical information in less data acquisition time utilizing a hybrid linear ion trap-orbitrap mass spectrometer. Anal Chem. 2010;22:9393–400.CrossRefGoogle Scholar
  37. 37.
    Nemes P, Woods AS, Vertes A. Simultaneous imaging of small metabolites and lipids in rat brain tissues at atmospheric pressure by laser ablation electrospray ionization mass spectrometry. Anal Chem. 2010;3:982–8.CrossRefGoogle Scholar
  38. 38.
    Berry KA, Hankin JA, Barkley RM, Spraggins JM, Caprioli RM, Murphy RC. MALDI imaging of lipid biochemistry in tissues by mass spectrometry. Chem Rev. 2011;10:6491–512.CrossRefGoogle Scholar
  39. 39.
    Gode D, Volmer DA. Lipid imaging by mass spectrometry—a review. Analyst. 2013;5:1289–315.CrossRefGoogle Scholar
  40. 40.
    Nazari M, Muddiman DC. Polarity switching mass spectrometry imaging of healthy and cancerous hen ovarian tissue sections by infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI). Analyst. 2015.Google Scholar
  41. 41.
    Laboratories, K. Steroid biosynthesis, KEGG pathway 00100, version 11/29/13. Available:
  42. 42.
    Matusch A, Fenn LS, Depboylu C, Klietz M, Strohmer S, McLean JA, et al. Combined elemental and biomolecular mass spectrometry imaging for probing the inventory of tissue at a micrometer scale. Anal Chem. 2012;7:3170–8.CrossRefGoogle Scholar
  43. 43.
    Berridge MJ. Inositol trisphosphate and diacylglycerol as second messengers. Biochem J. 1984;2:345–60.CrossRefGoogle Scholar
  44. 44.
    Berridge MJ. Inositol trisphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem. 1987;56:159–93.CrossRefGoogle Scholar
  45. 45.
    Nishizuka Y. Protein kinase C and lipid signaling for sustained cellular responses. FASEB J. 1995;7:484–96.Google Scholar
  46. 46.
    Adachi N, Oyasu M, Taniguchi T, Yamaguchi Y, Takenaka R, Shirai Y, et al. Immunocytochemical localization of a neuron-specific diacylglycerol kinase beta and gamma in the developing rat brain. Brain Res Mol Brain Res. 2005;2:288–99.CrossRefGoogle Scholar
  47. 47.
    Quan G, Xie C, Dietschy JM, Turley SD. Ontogenesis and regulation of cholesterol metabolism in the central nervous system of the mouse. Brain Res Dev Brain Res. 2003;1–2:87–98.CrossRefGoogle Scholar
  48. 48.
    Hankin JA, Farias SE, Barkley RM, Heidenreich K, Frey LC, Hamazaki K, et al. MALDI mass spectrometric imaging of lipids in rat brain injury models. J Am Soc Mass Spectrom. 2011;6:1014–21.CrossRefGoogle Scholar
  49. 49.
    Sugiura Y, Konishi Y, Zaima N, Kajihara S, Nakanishi H, Taguchi R, et al. Visualization of the cell-selective distribution of PUFA-containing phosphatidylcholines in mouse brain by imaging mass spectrometry. J Lipid Res. 2009;9:1776–88.CrossRefGoogle Scholar
  50. 50.
    Li F, Qin XZ, Chen HQ, Qiu L, Guo YM, Liu H, et al. Lipid profiling for early diagnosis and progression of colorectal cancer using direct-infusion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun Mass Spectrom. 2013;1:24–34.CrossRefGoogle Scholar
  51. 51.
    Tucci S, Flogel U, Spiekerkoetter U. Sexual dimorphism of lipid metabolism in very long-chain acyl-CoA dehydrogenase deficient (VLCAD(−/−)) mice in response to medium-chain triglycerides (MCT). Biochim BiophysActa (BBA) - Mol Basis Dis. 2015;7:1442–50.CrossRefGoogle Scholar
  52. 52.
    Jenkins B, West JA, Koulman A. A review of odd-chain fatty acid metabolism and the role of pentadecanoic acid (C15:0) and heptadecanoic acid (C17:0) in health and disease. Molecules. 2015;2:2425–44.CrossRefGoogle Scholar
  53. 53.
    Alexandrov T, Becker M, Deininger SO, Ernst G, Wehder L, Grasmair M, et al. Spatial segmentation of imaging mass spectrometry data with edge-preserving image denoising and clustering. J Proteome Res. 2010;12:6535–46.CrossRefGoogle Scholar
  54. 54.
    Alexandrov T, Kobarg JH. Efficient spatial segmentation of large imaging mass spectrometry datasets with spatially aware clustering. Bioinformatics. 2011;13:i230–8.CrossRefGoogle Scholar
  55. 55.
    Joshi-Tope G, Gillespie M, Vastrik I, D'Eustachio P, Schmidt E, de Bono B, et al. Reactome: a knowledgebase of biological pathways. Nucleic Acids Res. 2005;33:D428–32. Database issue.CrossRefGoogle Scholar
  56. 56.
    Deacon TW, Pakzaban P, Isacson O. The lateral ganglionic eminence is the origin of cells committed to striatal phenotypes: neural transplantation and developmental evidence. Brain Res. 1994;1–2:211–9.CrossRefGoogle Scholar
  57. 57.
    de Carlos JA, Lopez-Mascaraque L, Valverde F. Dynamics of cell migration from the lateral ganglionic eminence in the rat. J Neurosci. 1996;19:6146–56.Google Scholar
  58. 58.
    Wichterle H, Garcia-Verdugo JM, Herrera DG, Alvarez-Buylla A. Young neurons from medial ganglionic eminence disperse in adult and embryonic brain. Nat Neurosci. 1999;5:461–6.CrossRefGoogle Scholar
  59. 59.
    van Meer G. Cellular lipidomics. EMBO J. 2005;18:3159–65.CrossRefGoogle Scholar
  60. 60.
    Saito K, Dubreuil V, Arai Y, Wilsch-Brauninger M, Schwudke D, Saher G, et al. Ablation of cholesterol biosynthesis in neural stem cells increases their VEGF expression and angiogenesis but causes neuron apoptosis. Proc Natl Acad Sci U S A. 2009;20:8350–5.CrossRefGoogle Scholar
  61. 61.
    Andreyev AY, Fahy E, Guan Z, Kelly S, Li X, McDonald JG, et al. Subcellular organelle lipidomics in TLR-4-activated macrophages. J Lipid Res. 2010;9:2785–97.CrossRefGoogle Scholar
  62. 62.
    Tanyi JL, Hasegawa Y, Lapushin R, Morris AJ, Wolf JK, Berchuck A, et al. Role of decreased levels of lipid phosphate phosphatase-1 in accumulation of lysophosphatidic acid in ovarian cancer. Clin Cancer Res. 2003;10(Pt 1):3534–45.Google Scholar
  63. 63.
    Murray NR, Fields AP. Phosphatidylglycerol is a physiologic activator of nuclear protein kinase C. J Biol Chem. 1998;19:11514–20.CrossRefGoogle Scholar
  64. 64.
    Jokela H, Rantakari P, Lamminen T, Strauss L, Ola R, Mutka AL, et al. Hydroxysteroid (17beta) dehydrogenase 7 activity is essential for fetal de novo cholesterol synthesis and for neuroectodermal survival and cardiovascular differentiation in early mouse embryos. Endocrinology. 2010;4:1884–92.CrossRefGoogle Scholar
  65. 65.
    Rantakari P, Lagerbohm H, Kaimainen M, Suomela JP, Strauss L, Sainio K, et al. Hydroxysteroid (17{beta}) dehydrogenase 12 is essential for mouse organogenesis and embryonic survival. Endocrinology. 2010;4:1893–901.CrossRefGoogle Scholar
  66. 66.
    Gupta S, Knight AG, Keller JN, Bruce-Keller AJ. Saturated long-chain fatty acids activate inflammatory signaling in astrocytes. J Neurochem. 2012;6:1060–71.Google Scholar
  67. 67.
    Loikkanen I, Haghighi S, Vainio S, Pajunen A. Expression of cytosolic acetyl-CoA synthetase gene is developmentally regulated. Mech Dev. 2002;1–2:139–41.CrossRefGoogle Scholar
  68. 68.
    Takahashi H, McCaffery JM, Irizarry RA, Boeke JD. Nucleocytosolic acetyl-coenzyme a synthetase is required for histone acetylation and global transcription. Mol Cell. 2006;2:207–17.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.W.M. Keck FTMS Laboratory for Human Health Research, Department of ChemistryNorth Carolina State UniversityRaleighUSA
  2. 2.Department of ChemistrySaarland UniversitySaarbrueckenGermany
  3. 3.Proteomics and Signal TransductionMax-Planck-Institute of BiochemistryMartinsriedGermany
  4. 4.Department of Molecular Biomedical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighUSA

Personalised recommendations