Advertisement

Analytical and Bioanalytical Chemistry

, Volume 408, Issue 13, pp 3435–3443 | Cite as

Screening of the binding properties of molecularly imprinted nanoparticles via capillary electrophoresis

  • Giacomo Musile
  • Lucia Cenci
  • Erika Andreetto
  • Emmanuele Ambrosi
  • Franco Tagliaro
  • Alessandra Maria BossiEmail author
Research Paper

Abstract

In response to the need for straightforward analytical methods to assess the affinity of molecularly imprinted nanoparticles (MIP NPs) for ligands, capillary electrophoresis (CE) was exploited using MIP NPs targeting the iron-regulating hormone hepcidin. In this work, MIP NPs were challenged with their template peptide, i.e., the N-terminal 5-mer of hepcidin, in comparison to unrelated ligand peptides. A CE separation method was developed ex novo achieving, after optimization of the background electrolyte (150 mM sodium phosphate pH 7.4) and of the running temperature (35 °C), the full separation of the free ligand from the complexed MIP NPs. The CE binding isotherm allowed the estimation of a micromolar dissociation constant for the 5-mer template–MIP NPs complex, in agreement with independent measurements. The CE offered the advantages of a direct injection of the MIP NPs/ligand incubation mix, without preliminary fractionation steps, requiring only minimal sample volumes and short analysis times. In conclusion CE proved to be a valid technique for characterizing the interactions of MIP NP libraries for selected target compounds.

Graphical Abstract

Five different nanodiamond samples were exhaustively characterized using a suite of analytical techniques.

Keywords

Molecularly imprinted nanoparticles Capillary electrophoresis Binding isotherm Affinity Hepcidin 

Notes

Acknowledgments

AMB, LC, and GM thank Italian Ministry of Education, Research and University for the grant FIRB2012 RBFR12LD0W_003; The research leading to these results has received funding from the People Programme (Marie Curie Actions, PINP project awarded to EA) of the European Union’s Seventh Framework Programme FP7/2007-2013/ under REA grant agreement no. 327165. Authors are grateful to Dr. Andrea Anesi for the mass spectrometry analyses.

Compliance with ethical standards

Conflict of interests

The authors declare no conflict of interests.

Supplementary material

216_2016_9418_MOESM1_ESM.pdf (2.8 mb)
ESM 1 (PDF 2861 kb)

References

  1. 1.
    Zamborini FP, Bao L, Dasari R. Nanoparticles in measurement science. Anal Chem. 2012;84:541–76.CrossRefGoogle Scholar
  2. 2.
    Whitcombe MJ, Kirsch N, Nicholls IA. Molecular imprinting science and technology: a survey of the literature for the years 2004-2011. J Mol Recognit. 2014;27:297–401.CrossRefGoogle Scholar
  3. 3.
    Arshady R, Mosbach K. Synthesis of substrate-selective polymers by host-guest polymerization. Makromol Chem. 1981;182:687–92.CrossRefGoogle Scholar
  4. 4.
    Wulff G, Sarhan A. The use of polymers with enzyme-analogous structures for the resolution of racemates. Angew Chem Int Ed. 1972;11:341–6.Google Scholar
  5. 5.
    Stephenson CJ, Shimizu KD. Colorimetric and fluorometric molecularly imprinted polymer sensors and binding assays. Polym Int. 2007;56:482–8.CrossRefGoogle Scholar
  6. 6.
    Yang W, Wu Y, Zhang Y, Wei C, Yan S, Wang Q. Preparation and application of core-shell magnetic molecularly imprinted polymer microspheres. Prog Chem. 2010;22:1819–25.Google Scholar
  7. 7.
    Pérez N, Whitcombe MJ, Vulfson EN. Surface imprinting of cholesterol on submicrometer core−shell emulsion particles. Macromolecules. 2001;34:830–6.CrossRefGoogle Scholar
  8. 8.
    Perez-Moral N, Mayes AG. Noncovalent imprinting in the shell of core-shell nanoparticles. Langmuir. 2004;20:3775–9.CrossRefGoogle Scholar
  9. 9.
    Pérez N, Whitcombe MJ, Vulfson EN. Molecularly imprinted nanoparticles prepared by core-shell emulsion polymerization. J Appl Polym Sci. 2000;77:1851–9.CrossRefGoogle Scholar
  10. 10.
    Wulff G, Chong B-O, Kolb U. Soluble single-molecule nanogels of controlled structure as a matrix for efficient artificial enzymes. Angew Chem Int Ed. 2006;45:2955–8.CrossRefGoogle Scholar
  11. 11.
    Hoshino Y, Kodama T, Okahata Y, Shea KJ. Peptide imprinted polymer nanoparticles: a plastic antibody. J Am Chem Soc. 2008;130:15242–3.CrossRefGoogle Scholar
  12. 12.
    Poma A, Turner AP, Piletsky SA. Advances in the manufacture of MIP nanoparticles. Trends Biotechnol. 2010;28:629–37.CrossRefGoogle Scholar
  13. 13.
    Gonzato C, Courty M, Pasetto P, Haupt K. Magnetic molecularly imprinted polymer nanocomposites via surface-initiated RAFT polymerization. Adv Funct Mater. 2011;21:3947–53.CrossRefGoogle Scholar
  14. 14.
    Wackerlig J, Lieberzeit PA. Molecularly imprinted polymer nanoparticles in chemical sensing – synthesis, characterisation and application. Sensor Actuat B Chem. 2015;207A:144–57.CrossRefGoogle Scholar
  15. 15.
    Li S, Ge Y, Tiwari A, Wang S, Turner APF, Piletsky SA. ‘On/off’-switchable catalysis by a smart enzyme-like imprinted polymer. J Catal. 2011;278:173–80.CrossRefGoogle Scholar
  16. 16.
    Chianella I, Guerreiro A, Moczko E, Caygill JS, Piletska EV, De Vargas Sansalvador IM, et al. Direct replacement of antibodies with molecularly imprinted polymer nanoparticles in ELISA–development of a novel assay for vancomycin. Anal Chem. 2013;85:8462–8.CrossRefGoogle Scholar
  17. 17.
    Ngounou Wetie AG, Sokolowska I, Woods AG, Roy U, Loo JA, Darie CC. Investigation of stable and transient protein-protein interactions: past, present, and future. Proteomics. 2013;13:538–57.CrossRefGoogle Scholar
  18. 18.
    Guan J, Ding S, Liu ZH, Dong XX, Yan F, Shi S. Recent advances in determination methods of drug protein binding. Chin J New Drugs. 2014;23:1149–53.Google Scholar
  19. 19.
    Clapp AR, Medintz IL, Mauro JM, Fisher BR, Bawendi MG, Mattoussi H. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. J Am Chem Soc. 2004;126:301–10.CrossRefGoogle Scholar
  20. 20.
    Popelka SR, Miller DM, Holen JT, Kelso DM. Fluorescence polarization immunoassay. II. Analyzer for rapid, precise measurement of fluorescence polarization with use of disposable cuvettes. Clin Chem. 1981;27:1198–201.Google Scholar
  21. 21.
    Henry OY, Cullen DC, Piletsky SA. Optical interrogation of molecularly imprinted polymers and development of MIP sensors: a review. Anal Bioanal Chem. 2005;382:947–56.CrossRefGoogle Scholar
  22. 22.
    Jelesarov I, Bosshard HR. Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetics of biomolecular recognition. J Mol Recogn. 1999;12:3–18.CrossRefGoogle Scholar
  23. 23.
    Vuignier K, Schappler J, Veuthey JL, Carrupt PA, Martel S. Drug-protein binding: a critical review of analytical tools. Anal Bioanal Chem. 2010;398:53–66.CrossRefGoogle Scholar
  24. 24.
    Heegaard NHH, Nilsson S, Guzman NA. Affinity capillary electrophoresis: important application areas and some recent developments. J Chromatogr B Biomed Sci Appl. 1998;715:29–54.CrossRefGoogle Scholar
  25. 25.
    Heegaard NH, Kennedy RT. Identification, quantitation, and characterization of biomolecules by capillary electrophoretic analysis of binding interactions. Electrophoresis. 1999;20:3122–33.CrossRefGoogle Scholar
  26. 26.
    Seifar RM, Cool RH, Quax WJ, Bischoff R. Characterization of the interaction between human complement protein C4 and a single-chain variable fragment antibody by capillary electrophoresis and surface plasmon resonance. Electrophoresis. 2004;25:1561–8.CrossRefGoogle Scholar
  27. 27.
    Nilsson C, Birnbaum S, Nilsson S. Use of nanoparticles in capillary and microchip electrochromatography. J Chromatogr A. 2007;1168:212–24.CrossRefGoogle Scholar
  28. 28.
    Nilsson C, Nilsson S. Nanoparticle-based pseudostationary phases in capillary electrochromatography. Electrophoresis. 2006;27:76–83.CrossRefGoogle Scholar
  29. 29.
    Pigeon C, Ilyin G, Courselaud B, Leroyer P, Turlin B, Brissot P, et al. A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J Biol Chem. 2001;276:7811–9.CrossRefGoogle Scholar
  30. 30.
    Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306:2090–3.CrossRefGoogle Scholar
  31. 31.
    Cenci L, Andreetto E, Vestri A, Bovi M, Barozzi M, Iacob E, et al. Surface plasmon resonance based on molecularly imprinted nanoparticles for the picomolar detection of the iron regulating hormone Hepcidin-25. J Nanobiotechnol. 2015;13:1–15.CrossRefGoogle Scholar
  32. 32.
    Umpleby Ii RJ, Baxter SC, Rampey AM, Rushton GT, Chen Y, Shimizu KD. Characterization of the heterogeneous binding site affinity distributions in molecularly imprinted polymers. J Chromatogr B. 2004;804:141–9.CrossRefGoogle Scholar
  33. 33.
    García-Calzón JA, Díaz-García ME. Characterization of binding sites in molecularly imprinted polymers. Sensor Actuat B Chem. 2007;123:1180–94.CrossRefGoogle Scholar
  34. 34.
    Sips R. On the structure of a catalyst surface. J Chem Phys. 1948;16:490–5.CrossRefGoogle Scholar
  35. 35.
    Ganz T. Systemic iron homeostasis. Physiol Rev. 2013;93:1721–41.CrossRefGoogle Scholar
  36. 36.
    Piperno A, Mariani R, Trombini P, Girelli D. Hepcidin modulation in human diseases: From research to clinic. W J Gastroenterol. 2009;15:538–51.CrossRefGoogle Scholar
  37. 37.
    Swinkels DW, Girelli D, Laarakkers C, Kroot J, Campostrini N, Kemna EH, et al. Advances in quantitative hepcidin measurements by time-of-flight mass spectrometry. PLoS One. 2008;3:e2706.Google Scholar
  38. 38.
    Doane TL, Chuang CH, Hill RJ, Burda C. Nanoparticle zeta -potentials. Acc Chem Res. 2012;45:317–26.CrossRefGoogle Scholar
  39. 39.
    Piletska EV, Guerreiro AR, Romero-Guerra M, Chianella I, Turner AP, Piletsky SA. Design of molecular imprinted polymers compatible with aqueous environment. Anal Chim Acta. 2008;607:54–60.CrossRefGoogle Scholar
  40. 40.
    Reijenga JC, Kenndler E. Computational simulation of migration and dispersion in free capillary zone electrophoresis: I. Description of the theoretical model. J Chromatogr A. 1994;659:403–15.CrossRefGoogle Scholar
  41. 41.
    Reijenga JC, Kenndler E. Computational simulation of migration and dispersion in free capillary zone electrophoresis: II. Results of simulation and comparison with measurements. J Chromatogr A. 1994;659:417–26.CrossRefGoogle Scholar
  42. 42.
    Friedl W, Reijenga JC, Kenndler E. Ionic strength and charge number correction for mobilities of multivalent organic anions in capillary electrophoresis. J Chromatogr A. 1995;709:163–70.CrossRefGoogle Scholar
  43. 43.
    Rush RS, Cohen AS, Karger BL. Influence of column temperature on the electrophoretic behavior of myoglobin and alpha-lactalbumin in high-performance capillary electrophoresis. Anal Chem. 1991;63:1346–50.CrossRefGoogle Scholar
  44. 44.
    Jordan JB, Poppe L, Haniu M, Arvedson T, Syed R, Li V, et al. Hepcidin revisited, disulfide connectivity, dynamics, and structure. J Biol Chem. 2009;284:24155–67.CrossRefGoogle Scholar
  45. 45.
    Righetti PG. Capillary electrophoresis in analytical biotechnology: a balance of theory and practice. Boca Raton: CRC; 1995.Google Scholar
  46. 46.
    Chen Y, Kele M, Sajonz P, Sellergren B, Guiochon G. Influence of thermal annealing on the thermodynamic and mass-transfer kinetic properties of d- and l-phenylalanine anilide on imprinted polymeric stationary phases. Anal Chem. 1999;71:928–38.CrossRefGoogle Scholar
  47. 47.
    Pollard TD. A guide to simple and informative binding assays. Mol Biol Cell. 2010;21:4061–7.CrossRefGoogle Scholar
  48. 48.
    Yang J, Zhu XL, Su QD, Cai JB, Hu Y, Gao Y. Spectroscopy and XPS studies on molecular recognition of a molecularly imprinted cotinine-specific polymer. Spectrosc Spect Anal. 2007;27:1152–5.Google Scholar
  49. 49.
    Liang C, Fréchet JMJ. Applying key concepts from nature: transition state stabilization, pre-concentration and cooperativity effects in dendritic biomimetics. Prog Polym Sci. 2005;30:385–402.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Giacomo Musile
    • 1
  • Lucia Cenci
    • 2
  • Erika Andreetto
    • 2
  • Emmanuele Ambrosi
    • 3
  • Franco Tagliaro
    • 1
  • Alessandra Maria Bossi
    • 2
    Email author
  1. 1.Department of Diagnostics and Public Health, Unit of Forensic MedicineUniversity of VeronaVeronaItaly
  2. 2.Department of BiotechnologyUniversity of VeronaVeronaItaly
  3. 3.Department of Molecular Sciences and NanosystemsUniversity Ca’ Foscari VeneziaVeniceItaly

Personalised recommendations