Analytical and Bioanalytical Chemistry

, Volume 408, Issue 11, pp 2707–2715 | Cite as

Emerging scanning probe approaches to the measurement of ionic reactivity at energy storage materials

  • Zachary J. Barton
  • Joaquín Rodríguez-LópezEmail author
Part of the following topical collections:
  1. Young Investigators in Analytical and Bioanalytical Science


Many modern energy storage technologies operate via the nominally reversible shuttling of alkali ions between an anode and a cathode capable of hosting them. The degradation process that occurs with normal usage is not yet fully understood, but emerging progress in analytical tools may help address this knowledge gap. By interrogating ionic fluxes over electrified surfaces, scanning probe methods may identify features that impact the local cyclability of a material and subsequently help inform rational electrode design for future generations of batteries. Methods developed for identifying ion fluxes for batteries show great promise for broader applications, including biological interfaces, corrosion, and catalysis.

Graphical Abstract

Versatile ionics for next-generation batteries


Electroanalytical methods Electrochemical sensors Li-ion batteries SECCM SECM SICM Stripping analysis 



Z.J.B. acknowledges the support of the National Science Foundation Graduate Research Fellowship Program (DGE-1144245). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. J. R.-L. acknowledges support from the Joint Center for Energy Storage Research, an Energy Innovation Hub funded by the US Department of Energy, Office of Science, Basic Energy Sciences. The authors also thank UIUC for generous start-up funds.

Compliance with ethical standards

Conflict of Interest

The authors declare no conflict of interest.


  1. 1.
    Scott ER, White HS, Phipps JB. Iontophoretic transport through porous membranes using scanning electrochemical microscopy: application to in vitro studies of ion fluxes through skin. Anal Chem. 1993;65(11):1537–45.CrossRefGoogle Scholar
  2. 2.
    Novak P, Li C, Shevchuk AI, Stepanyan R, Caldwell M, Hughes S, et al. Nanoscale live-cell imaging using hopping probe ion conductance microscopy. Nat Methods. 2009;6(4):279–81.CrossRefGoogle Scholar
  3. 3.
    Shen M, Ishimatsu R, Kim J, Amemiya S. Quantitative imaging of ion transport through single nanopores by high-resolution scanning electrochemical microscopy. J Am Chem Soc. 2012;134(24):9856–9.CrossRefGoogle Scholar
  4. 4.
    Chen C-C, Zhou Y, Morris CA, Hou J, Baker LA. Scanning ion conductance microscopy measurement of paracellular channel conductance in tight junctions. Anal Chem. 2013;85(7):3621–8.CrossRefGoogle Scholar
  5. 5.
    Yamada H, Haraguchi D, Yasunaga K. Fabrication and characterization of a K+-selective nanoelectrode and simultaneous imaging of topography and local K+ flux using scanning electrochemical microscopy. Anal Chem. 2014;86(17):8547–52.CrossRefGoogle Scholar
  6. 6.
    Dauphin-Ducharme P, Asmussen RM, Shoesmith DW, Mauzeroll J. In-situ Mg2+ release monitored during magnesium alloy corrosion. J Electroanal Chem. 2015;736(C):61–8.CrossRefGoogle Scholar
  7. 7.
    Kang B, Ceder G. Battery materials for ultrafast charging and discharging. Nature. 2009;458(7235):190–3.CrossRefGoogle Scholar
  8. 8.
    Goodenough JB, Kim Y. Challenges for rechargeable Li batteries. Chem Mater. 2010;22(3):587–603.CrossRefGoogle Scholar
  9. 9.
    Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci. 2011;4(9):3243–62.CrossRefGoogle Scholar
  10. 10.
    Goodenough JB, Park K-S. The Li-ion rechargeable battery: a perspective. J Am Chem Soc. 2013;135(4):1167–76.CrossRefGoogle Scholar
  11. 11.
    Tavassol H, Chan MKY, Catarello MG, Greeley JP, Cahill DG, Gewirth AA. Surface coverage and SEI induced electrochemical surface stress changes during Li deposition in a model system for Li-ion battery anodes. J Electrochem Soc. 2013;160(6):A888–96.CrossRefGoogle Scholar
  12. 12.
    Aurbach D, Daroux ML, Faguy PW, Yeager E. Identification of surface films formed on lithium in propylene carbonate solutions. J Electrochem Soc. 1987;134(7):1611–20.CrossRefGoogle Scholar
  13. 13.
    Verma P, Maire P, Novák P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim Acta. 2010;55(22):6332–41.CrossRefGoogle Scholar
  14. 14.
    Norberg NS, Lux SF, Kostecki R. Interfacial side-reactions at a LiNi0.5Mn1.5O4 electrode in organic carbonate-based electrolytes. Electrochem Commun. 2013;34(C):29–32.CrossRefGoogle Scholar
  15. 15.
    Smith AJ, Burns JC, Zhao X, Xiong D, Dahn JR. A high precision coulometry study of the SEI growth in Li/graphite cells. J Electrochem Soc. 2011;158(5):A447–52.CrossRefGoogle Scholar
  16. 16.
    Aurbach D. Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. J Power Sources. 2000;89(2):206–18.CrossRefGoogle Scholar
  17. 17.
    Petibon R, Sinha NN, Burns JC, Aiken CP, Ye H, VanElzen CM, et al. Comparative study of electrolyte additives using electrochemical impedance spectroscopy on symmetric cells. J Power Sources. 2014;251:187–94.CrossRefGoogle Scholar
  18. 18.
    Wang DY, Sinha NN, Burns JC, Petibon R, Dahn JR. A high precision study of the electrolyte additives vinylene carbonate, vinyl ethylene carbonate and lithium bis(oxalate)borate in LiCoO2/graphite pouch cells. J Power Sources. 2014;270:68–78.CrossRefGoogle Scholar
  19. 19.
    Persson K, Sethuraman VA, Hardwick LJ, Hinuma Y, Meng YS, van der Ven A, et al. Lithium diffusion in graphitic carbon. J Phys Chem Lett. 2010;1(8):1176–80.CrossRefGoogle Scholar
  20. 20.
    Zheng J, Gu M, Xiao J, Zuo P, Wang C, Zhang J-G. Corrosion/fragmentation of layered composite cathode and related capacity/voltage fading during cycling process. Nano Lett. 2013;13(8):3824–30.CrossRefGoogle Scholar
  21. 21.
    Darling RM, Gallagher KG, Kowalski JA, Ha S, Brushett FR. Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries. Energy Environ Sci. 2014;7:3459–77.CrossRefGoogle Scholar
  22. 22.
    Jaber-Ansari L, Puntambekar KP, Tavassol H, Yildirim H, Kinaci A, Kumar R, et al. Defect evolution in graphene upon electrochemical lithiation. ACS Appl Mater Interfaces. 2014;6(20):17626–36.CrossRefGoogle Scholar
  23. 23.
    Inaba M, Yoshida H, Ogumi Z, Abe T, Mizutani Y, Asano M. In Situ Raman study on electrochemical Li intercalation into graphite. J Electrochem Soc. 1995;142(1):20–6.CrossRefGoogle Scholar
  24. 24.
    Sole C, Drewett NE, Hardwick LJ. In situ Raman study of lithium-ion intercalation into microcrystalline graphite. Faraday Discuss. 2014;172:223–37.Google Scholar
  25. 25.
    Dahn JR. Phase diagram of LixC6. Phys Rev B. 1991;44(17):9170–7.CrossRefGoogle Scholar
  26. 26.
    Hatchard TD, Dahn JR. In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J Electrochem Soc. 2004;151(6):A838–42.CrossRefGoogle Scholar
  27. 27.
    Chen Z, Dahn JR. Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5 V. Electrochim Acta. 2004;49(7):1079–90.CrossRefGoogle Scholar
  28. 28.
    Lipson AL, Hersam MC. Conductive scanning probe characterization and nanopatterning of electronic and energy materials. J Phys Chem C. 2013;117(16):7953–63.CrossRefGoogle Scholar
  29. 29.
    Balke N, Jesse S, Kim Y, Adamczyk L, Tselev A, Ivanov IN, et al. Real space mapping of Li-ion transport in amorphous Si anodes with nanometer resolution. Nano Lett. 2010;10(9):3420–5.CrossRefGoogle Scholar
  30. 30.
    Harris SJ, Lu P. Effects of inhomogeneities—nanoscale to mesoscale—on the durability of Li-ion batteries. J Phys Chem C. 2013;117(13):6481–92.CrossRefGoogle Scholar
  31. 31.
    Bard AJ, Fan F-R, Kwak J, Lev O. Scanning electrochemical microscopy. Introduction and principles. Anal Chem. 1989;61(2):132–8.CrossRefGoogle Scholar
  32. 32.
    Bard AJ, Denuault G, Lee C, Mandler D, Wipf DO. Scanning electrochemical microscopy—a new technique for the characterization and modification of surfaces. Acc Chem Res. 1990;23(11):357–63.CrossRefGoogle Scholar
  33. 33.
    Bard AJ, Fan F-R, Pierce DT, Unwin PR, Wipf DO, Zhou F. Chemical imaging of surfaces with the scanning electrochemical microscope. Science. 1991;254:68–74.CrossRefGoogle Scholar
  34. 34.
    Sun P, Laforge FO, Mirkin MV. Scanning electrochemical microscopy in the 21st century. Phys Chem Chem Phys. 2007;9(7):802–23.CrossRefGoogle Scholar
  35. 35.
    Bertoncello P. Advances on scanning electrochemical microscopy (SECM) for energy. Energy Environ Sci. 2010;3(11):1620–33.CrossRefGoogle Scholar
  36. 36.
    Mirkin MV, Nogala W, Velmurugan J, Wang Y. Scanning electrochemical microscopy in the 21st century. Update 1: 5 years after. Phys Chem Chem Phys. 2011;13(48):21196–212.CrossRefGoogle Scholar
  37. 37.
    Kranz C. Recent advancements in nanoelectrodes and nanopipettes used in combined scanning electrochemical microscopy techniques. Analyst. 2014;139(2):336–52.CrossRefGoogle Scholar
  38. 38.
    Bülter H, Peters F, Schwenzel J, Wittstock G. Spatiotemporal changes of the solid electrolyte interphase in lithium-ion batteries detected by scanning electrochemical microscopy. Angew Chem Int Ed. 2014;53(39):10531–5.CrossRefGoogle Scholar
  39. 39.
    Ventosa E, Schuhmann W. Scanning electrochemical microscopy of Li-ion batteries. Phys Chem Chem Phys. 2015;17:28441–50.CrossRefGoogle Scholar
  40. 40.
    Chen C-C, Zhou Y, Baker LA. Scanning ion conductance microscopy. Annu Rev Anal Chem. 2012;5(1):207–28.CrossRefGoogle Scholar
  41. 41.
    Lipson AL, Ginder RS, Hersam MC. Nanoscale in situ characterization of Li-ion battery electrochemistry via scanning ion conductance microscopy. Adv Mater. 2011;23(47):5613–7.CrossRefGoogle Scholar
  42. 42.
    Ebejer N, Güell AG, Lai SCS, McKelvey K, Snowden ME, Unwin PR. Scanning electrochemical cell microscopy: a versatile technique for nanoscale electrochemistry and functional imaging. Annu Rev Anal Chem. 2013;6(1):329–51.CrossRefGoogle Scholar
  43. 43.
    Takahashi Y, Kumatani A, Munakata H, Inomata H, Ito K, Ino K, et al. Nanoscale visualization of redox activity at lithium-ion battery cathodes. Nat Commun. 2014;5:1–7.Google Scholar
  44. 44.
    Momotenko D, Byers JC, McKelvey K, Kang M, Unwin PR. High-speed electrochemical imaging. ACS Nano. 2015;9(9):8942–52.CrossRefGoogle Scholar
  45. 45.
    Alpuche-Aviles M, Baur JE, Wipf DO. Imaging of metal ion dissolution and electrodeposition by anodic stripping voltammetry-scanning electrochemical microscopy. Anal Chem. 2008;80(10):3612–21.CrossRefGoogle Scholar
  46. 46.
    Souto RM, González-García Y, Battistel D, Daniele S. In situ scanning electrochemical microscopy (SECM) detection of metal dissolution during zinc corrosion by means of mercury sphere-cap microelectrode tips. Chem Eur J. 2011;18(1):230–6.CrossRefGoogle Scholar
  47. 47.
    Barton ZJ, Rodríguez-López J. Lithium ion quantification using mercury amalgams as in situ electrochemical probes in nonaqueous media. Anal Chem. 2014;86(21):10660–7.CrossRefGoogle Scholar
  48. 48.
    Hansma P, Drake B, Marti O, Gould S, Prater C. The scanning ion-conductance microscope. Science. 1989;243(4891):641–3.CrossRefGoogle Scholar
  49. 49.
    Lipson AL, Puntambekar K, Comstock DJ, Meng X, Geier ML, Elam JW, et al. Nanoscale investigation of solid electrolyte interphase inhibition on Li-ion battery MnO electrodes via atomic layer deposition of Al2O3. Chem Mater. 2014;26(2):935–40.CrossRefGoogle Scholar
  50. 50.
    Rheinlaender J, Schäffer TE. Lateral resolution and image formation in scanning ion conductance microscopy. Anal Chem. 2015;87(14):7117–24.CrossRefGoogle Scholar
  51. 51.
    Sa N, Lan W-J, Shi W, Baker LA. Rectification of Ion current in nanopipettes by external substrates. ACS Nano. 2013;7(12):11272–82.CrossRefGoogle Scholar
  52. 52.
    Takahashi Y, Shevchuk AI, Novak P, Zhang Y, Ebejer N, Macpherson JV, et al. Multifunctional nanoprobes for nanoscale chemical imaging and localized chemical delivery at surfaces and interfaces. Angew Chem Int Ed. 2011;50(41):9638–42.CrossRefGoogle Scholar
  53. 53.
    O’Connell MA, Wain AJ. Mapping electroactivity at individual catalytic nanostructures using high-resolution scanning electrochemical-scanning ion conductance microcopy. Anal Chem. 2014;86(24):12100–7.CrossRefGoogle Scholar
  54. 54.
    Ebejer N, Schnippering M, Colburn AW, Edwards MA, Unwin PR. Localized high resolution electrochemistry and multifunctional imaging: scanning electrochemical cell microscopy. Anal Chem. 2010;82(22):9141–5.CrossRefGoogle Scholar
  55. 55.
    Paulose Nadappuram B, McKelvey K, Byers JC, Güell AG, Colburn AW, Lazenby RA, et al. Quad-barrel multifunctional electrochemical and ion conductance probe for voltammetric analysis and imaging. Anal Chem. 2015;87(7):3566–73.CrossRefGoogle Scholar
  56. 56.
    Wehmeyer KR, Wightman RM. Cyclic voltammetry and anodic stripping voltammetry with mercury ultramicroelectrodes. Anal Chem. 1985;57(9):1989–93.CrossRefGoogle Scholar
  57. 57.
    Selzer Y, Mandler D. Scanning electrochemical microscopy. Theory of the feedback mode for hemispherical ultramicroelectrodes: steady-state and transient behavior. Anal Chem. 2000;2(11):2383–90.CrossRefGoogle Scholar
  58. 58.
    Mauzeroll J, Hueske EA, Bard AJ. Scanning electrochemical microscopy. 48. Hg/Pt hemispherical ultramicroelectrodes: fabrication and characterization. Anal Chem. 2003;75(15):3880–9.CrossRefGoogle Scholar
  59. 59.
    Aaronson BDB, Byers JC, Colburn AW, McKelvey K, Unwin PR. Scanning electrochemical cell microscopy platform for ultrasensitive photoelectrochemical imaging. Anal Chem. 2015;87(8):4129–33.CrossRefGoogle Scholar
  60. 60.
    Danis L, Gateman SM, Snowden ME, Halalay IC, Howe JY, Mauzeroll J. Anodic stripping voltammetry at nanoelectrodes: trapping of Mn2+ by crown ethers. Electrochim Acta. 2015;162:169–75.CrossRefGoogle Scholar
  61. 61.
    Singhal R, Bhattacharyya S, Orynbayeva Z, Vitol E, Friedman G, Gogotsi Y. Small diameter carbon nanopipettes. Nanotechnology. 2009;21(1):015304.CrossRefGoogle Scholar
  62. 62.
    Actis P, Tokar S, Clausmeyer J, Babakinejad B, Mikhaleva S, Cornut R, et al. Electrochemical nanoprobes for single-cell analysis. ACS Nano. 2014;8(1):875–84.CrossRefGoogle Scholar
  63. 63.
    Danis L, Snowden ME, Tefashe UM, Heinemann CN, Mauzeroll J. Development of nano-disc electrodes for application as shear force sensitive electrochemical probes. Electrochim Acta. 2014;136:121–9.CrossRefGoogle Scholar
  64. 64.
    Alpuche-Aviles M, Wipf DO. Impedance feedback control for scanning electrochemical microscopy. Anal Chem. 2001;73(20):4873–81.CrossRefGoogle Scholar
  65. 65.
    Lazenby RA, McKelvey K, Unwin PR. Hopping intermittent contact-scanning electrochemical microscopy (HIC-SECM): visualizing interfacial reactions and fluxes from surfaces to bulk solution. Anal Chem. 2013;85(5):2937–44.CrossRefGoogle Scholar
  66. 66.
    Luo W, Wan J, Ozdemir B, Bao W, Chen Y, Dai J, et al. Potassium ion batteries with graphitic materials. Nano Lett. 2015;15(11):7671–7.CrossRefGoogle Scholar
  67. 67.
    Gu M, Kushima A, Shao Y, Zhang J-G, Liu J, Browning ND, et al. Probing the failure mechanism of SnO2 nanowires for sodium-ion batteries. Nano Lett. 2013;13(11):5203–11.CrossRefGoogle Scholar
  68. 68.
    Islam MS, Fisher CAJ. Lithium and sodium battery cathode materials: computational insights into voltage, diffusion, and nanostructural properties. Chem Soc Rev. 2013;43(1):185–204.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations